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To all Semantic Web and Semantic Web Services (SWS) researchers:
Let’s make it real!



Preface

Motivation

Computer science appears to be in a period of crisis. The globalization trend is mov-
ing programming jobs to low-labor countries. This appears to place computer science
research and departments at risk of being considered as working on obsolete tech-
nology. However, the opposite is true. Computer science is on the verge of a new
generation of computing that is leading to innovation not only in computing but also
in business, science, and all other endeavors that depend on computing.

Times of crisis are also times of innovation and can lead to paradigm shifts.
Computer science is entering a new generation. The previous generation was based
on abstracting from hardware. The emerging generation comes from abstracting from
software and sees all resources as services in a Service-Oriented Architecture (SOA).
A SOA is essentially a collection of services and these services can communicate
with each other. The communication can involve simple data passing or it could in-
volve multiple services coordinating some activity. In a world of services, users are
concerned only about the services and not about any software or hardware compo-
nents that implement the service. To this end, service-oriented computing has be-
come one of the predominant factors in current IT research and development efforts
over the last few years.

Standardization in this area has already made its way out of the research lab-
oratories into industrial-strength technologies and tools. Again, Web technologies
prove to be a good starting point: Web Services seem to be the middleware solution
of the future for enabling the development of highly interoperable, distributed soft-
ware solutions: the new technologies subsumed under this common term promise
easy application integration by means of languages such as XML, and a common
communication platform by relying on widely used Web protocols.

A service-oriented world will have in the future an “uncountable” number of
services. Computation will involve services searching for services based on func-
tional and nonfunctional requirements and interoperating with those that they select.
However, services will not be able to interact automatically and SOAs will not scale
without signification mechanization of service discovery, negotiation, adaptation,
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composition, invocation, and monitoring as well as service interaction which will
require further data, protocol, and process mediation. Hence, machine processable
semantics are critical for the next generation of computing — SOAs — to reach its
full potential. Only with semantics can critical subtasks can be automated leaving
humans to focus on problem solving.

This book presents a comprehensive Semantically Enabled Service-oriented
Architecture (SESA) framework which aims to augment the worldwide movement
to service orientation with semantics in the context of evolving industrial standards
and technologies. Several promising results from numerous recent EU projects and
efforts within standardization bodies such as OASIS and W3C show the direction for
further developments and commercialization of semantic-based technologies.

Goals

The goal of this book is to provide an insight into and an understanding of the prob-
lems faced by Web Services and SOAs. Considering current Web service technolo-
gies, there is a large amount of human effort required in the process of finding and
executing Web Services. This book lays the foundation for understanding the Seman-
tic Web Services infrastructure, aimed at eliminating human intervention allowing
for seamless integration of information system. It focuses on a particular infrastruc-
ture, which is currently the most advanced Semantic Web Services infrastructure,
namely, SESA, and its related efforts such as the Web Services Execution Environ-
ment (WSMX) activities and the Semantic Execution Environment (OASIS SEE TC)
standardization effort.

With the present book we want to give an overall understanding of SESA and
show how it can be applied to the problems of SOAs. Industry, which plans to com-
mercialize semantic solutions, is searching for examples and literature that guide it
in the development of the end-to-end applications and systems that use semantics.
This book targets professionals and researchers who want to improve their under-
standing of how semantics can be applied in execution engines to enable interoper-
ability between distributed information systems. While such systems are already in
the process of being developed and standardized in the open source community, the
lack of appropriate literature prevents the wider popularization of these technologies.
That is to say that while prototypes of such systems are already available, the com-
mercialization of these technologies remains in its infancy. This book aims to bridge
this gap and bring existing prototypes closer to commercial exploitation.

Intended Audience

The book is suitable for professionals, academic and industry researchers working on
various aspects of semantics, who have knowledge of integration aspects gained from
their past experiences using traditional integration technologies. Through this book
they will learn how to apply the Semantic Web Services infrastructure to automate
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and semiautomate tasks, which until now have required a lot of human intervention,
while using existing integration technologies. This book is also suitable for novice
readers, such as advanced graduate students enrolled in courses covering knowledge
management, the Semantic Web, and engineering and semantics in information sys-
tems. This book will educate them about grounding technologies for Semantic Web
Services, but will also explain the more generic issues related to integration of infor-
mation systems.

Organization of This Book

We have divided the book into four main parts.

Part I provides an introduction to the field and its history. We cover basic Web
technologies, Web Services and their predecessors, and the state of research and
standardization in the Semantic Web field.

Part II presents SESA — the architecture aiming to enable the execution of
Semantic Web Services. We describe the building blocks and show how they are
consolidated into a coherent software architecture that can be used as a blueprint for
implementation.

Part I1I gives more insight into middleware services. The architecture defines the
necessary conceptual functionality that is imposed on the architecture through the
underlying principles. Each such functionality is realized (totally or partially) by a
number of so-called middleware services.

Part IV shows how SESA can be applied to real-world scenarios and provides an
overview of compatible and related systems.
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Part I

Foundations
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From Web to Semantic Web

Although the targeted audience of this book is professionals and researchers who
are presumably somewhat familiar with the current state of the art when it comes
to the Internet, World Wide Web, Web programming, semantic technologies, etc.,
this chapter will provide a very brief background of the history of the World Wide
Web and its current relevant technologies essential to semantically enabled service-
oriented architectures. Second, to bring the reader “up-to-speed” and to establish a
common ground to base the rest of the chapters on, this chapter will emphasize the
limits of the current Web technologies in order to clearly motivate the need for the
technological advancements proposed in this book. The chapter’s twofold purpose is
then to provide sufficient background information and to prove that the technologies
of the Semantic Web provide the foundation on which Semantically Enabled Service-
oriented Architecture (SESA) is able to functionally operate.

1.1 The Web — A Familiar Starting Point

For the context of this book, we will provide a short look at the origins of the World
Wide Web. Our story actually begins with Tim Berners-Lee’s first visionary outline
of the Semantic Web, thoroughly presented in the keynote session at the XML 2000
conference;' however, such a story necessitates some minimal background.

The final decade of the twentieth century proved to be quite pivotal in the evo-
lution of the Internet and the World Wide Web. One significant precursor to this
progressive decade was in 1983, when ARPANet — originally a mere network of four
connected servers which spurred the development of technologies such as e-mail,
FTP, and Telnet (more or less the grandfather of the Internet as we know it today) —
made the official host protocol transition from NetWare Core Protocol (NCP) to
Transmission Control Protocol/Internet Protocol (TCP/IP — the two main commu-
nication protocols on which the Internet currently runs). The 1980s closed with the
decommissioning of ARPANet, in celebration of its 20th anniversary, and the path
was set for the World Wide Web to take over [134].

L http://www.w3.0rg/2000/Talks/1206-xmlI2k-tbl/Overview.html



4 1 From Web to Semantic Web

By the end of 1990, Tim Berners-Lee and Robert Cailliau, while working to-
gether at the European Organization for Nuclear Research, more commonly known
as CERN, had begun to develop what is now accredited as the first Web browser, ed-
itor, server, and line-mode browser, whose name resultantly coined the term World
Wide Web. Originally spelled without spaces, the WorldWideWeb was a tool which
provided the first way to view the Web although at the time the “Web” only consisted
of a single Web server and Web page, and the system was limited to text only (em-
bedded graphics were not initially supported). The WorldWideWeb, later renamed
Nexus in order to save confusion between the program and the abstract information
space, was a distributed hypertext-based system which originally set out to resolve
the challenges of information management within CERN. Alternatively, by basing
the system on three simple and extremely extensible elements, hereafter referred to
as the World Wide Web’s enabling protocols (a standard protocol, globally unique
identifiers, and a standardized format specification for publishing which strives to
provide the internationalization of documents; all of which are later thoroughly dis-
cussed), the foundation for the world’s most successful distributed information sys-
tem was in place.

Tim Berners-Lee and his colleagues at CERN were not the only ones who recog-
nized the dire need to categorically organize networked information, as well as to
make documents and resources remotely available, in order to allow for efficient
search and retrieval (management) of shared information. Gopher, a distributed
document search and retrieval network protocol, was designed in 1991 by a group
of researchers lead by Mark McCahill at the University of Minnesota. Gopher
essentially set out to achieve the same overall goal as what was accomplished at
CERN; however, its design was too rigid and limiting compared with the Berners-Lee
hypertext-based model (although Gopher also used a similar link-based model). Like
the WorldWideWeb, it is a client—server model. Both systems involve multiple re-
mote servers, where any server can point to a document on any other server. Both
systems allow the user to essentially jump from one server to another by simply
reading a screen of text (Gopher had a more rigid hierarchy of folders and docu-
ments), making a selection, and resultantly receiving another screen of information
allowing for further selection, and so on. Gopher, however, guides you through one
menu followed by another until you are able to locate the desired document or re-
source. The WorldWideWeb, on the other hand, allowed the user to directly link from
one document to the next.

While the WorldWideWeb had a graphical interface, and it is rightly recog-
nized as the first graphical user interface for browsing the Web, the first graphi-
cal Web browser, Mosaic, was developed by Marc Andreessen and Eric Bina at the
National Center for Supercomputing Applications (NCSA) in 1993. Mosaic provided
a browser which supported both the World Wide Web enabling protocols and Gopher
protocols, in addition to several other protocols. It came storming upon the then still
relatively immature Web-centric community and was quickly crowned as the Inter-
net’s first killer application. Whether this is true may still be debatable, however
what is clear is that is was merely an application. The true power under the hood was
the combination of the Web’s enabling protocols and the resultant hypertext-based
model as laid out by Berners-Lee.
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Today, Gopher refuses to go down without a fight. Hobbyists and archivists still
manage to maintain a handful of servers, though even the die-hard enthusiasts admit
they have no expectations of Gopher ever overtaking the Web, although they pas-
sionately expect it to continue to exist. Through an adventurous series of IP conflicts
and licensing battles, Mosaic would go on to spawn what would later be referred
to as the browser wars. Yet in hindsight, Gopher is already a geriatric protocol and
Mosaic simply proved to be the first necessary interface required to bring the Web
to the nonexpert user. There were of course several other players in the infant years
of the Web; however, the context of this book does not allow us to properly treat
other important contributions. For the sake of brevity, we focus on the essential stan-
dardized building blocks which proved to be of far greater importance than other
combined singular efforts: these aforementioned Web-enabling protocols became the
fundamental architectural principles of the Web [111, 199].

1.2 Architectural Principles of the World Wide Web

The fundamental architectural principles of the World Wide Web that enable its uni-
versality are the standardizations of identification, interaction, and format. Identifi-
cation is probably the most essential of these three fundamental principles since it
is its global uniqueness which allows resources to be identified via hypertext links
regardless of where they are located on the Web. After these resources have been
identified, a standardized interaction protocol is required in order to quickly and ef-
ficiently traverse between hypertext links via simple client—server interactions in a
stateless request—response manner. This allows the user to navigate through the avail-
able resources. Lastly, given the correct identifier and valid interaction protocol, a
standardized format for the data transmitted is required in order to provide an easy-
to-use layout language for the Web [17]. The combination of the protocols is shown
in Fig. 1.1.

Identification — Uniform Resource Identifiers

Uniform Resource Identifiers (URIs) follow the very simple but effective identifica-
tion principle, whereby global naming leads to a global network. Originally coined
“Universal Resource Identifier,” the idea (as an official standard) dates back to June
of 1994 when it was first mentioned in an Internet Engineering Task Force (IETT)
RFC.2 Since, URIs have become understood as “uniform” and have been distin-
guished between Uniform Resource Locators (URLs) and Uniform Resource Names

2 Historically, the original term the author used was Universal Document Identifier in the
WWW documentation. In discussions in the IETF, there was a view expressed by several
people that “universal” was too strong, in that it could or should not be a goal to make an
identifier which could be applied to all things. The author disagreed and disagrees with this
position. However, in the interest of expediency at the time he bowed to peer pressure and
allowed “uniform” to be substituted for “universal” in RFC2306. He has since decided that
that did more harm than good, and he now uses “universal” to indicate the importance to
the Web architecture of the single universal information space [18].
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Oaxaca</title>

</html>

Figure 1.1. Architectural principles of the World Wide Web. (Reproduced from [110])

(URNs), although there are both classical and contemporary views of their differ-
ing semantics. Generally, URLs were conceived as addresses of a dereferencable
resource, whereas URNs are not necessarily dereferencable. Much of the motivation
for the Semantic Web comes from the value locked in relational databases and legacy
systems. To release this value, objects must be exported to the Web as first-class ob-
jects and therefore must be mapped into a system of URIs [192].

Interaction — Hypertext Transfer Protocol

The most commonly used interaction protocol is the http:// scheme (Hypertext
Transfer Protocol, HTTP). In most cases this is a server or domain name which has
the practical side effect that domains indeed belong to legal entities. The HTTP URIs
are resolved into the addressed document by splitting them into two halves. The first
half is applied to the Domain Name Service to discover a suitable server, and the
second half is an opaque string which is handed to that server.

A feature of HTTP is that it allows a client to specify preferences in terms of
language and data format. This allows a server to select a suitable specific object
when the URI requested was generic. This feature is implemented in various HTTP
servers but tends to be underutilized by clients, partly because of the time overhead
in transmitting the preferences, and partly because historically generic URIs have
been the exception. This feature, known as format negotiation, is one key element of
independence between the HTTP specification and the HTML specification.
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Format — Hypertext Markup Language

The hypertext pages on the Web are written using the Hypertext Markup Language
(HTML), a simple language consisting of a small number of tags to delineate logical
constructs within the text. Unlike a procedural language such as postscript, HTML
deals with higher-level constructs such as “headings,” “lists,” “images,” etc. This
leaves individual browsers free to format text in the most appropriate way for their
particular environment.

The earliest versions of HTML were deliberately kept very simple, allowing
browser developers a fair amount of leeway when deciding how to display the for-
matted data. Although most Web browsers are able to communicate using a variety
of protocols, such as FTP or Gopher, HTML caters to HTTP. In order to give the fast
response time needed for hypertext applications, a very simple protocol which uses
a single round trip between the client and the server is used [77].

Combination of All Three Principles: The World Wide Web

Berners-Lee was insistent that only these three protocols were required, and nothing
more. Simplicity was key. “What was often difficult for people to understand about
the design was that there was nothing else beyond URIs, HTTP, and HTML. There
was no central computer ‘controlling’ the Web, no single network on which these
protocols worked, not even an organization anywhere that ‘ran’ the Web. The Web
was not a physical ‘thing’ that existed in a certain ‘place.” It was a ‘space’ in which
information could exist [19].”

At first look, these architectural principles do not appear exactly groundbreaking,
nor complex — actually, perhaps their most attractive feature is outright simplicity (as
an efficient, high-level architecture should be). Second to their simplicity is their
consistent widespread acceptance and usage (or consensus). And this was again due
to Berners-Lee’s genius and foresight. Had the enabling protocols been restricted
under proprietary licenses,? and left under the complete jurisdiction of Berners-Lee
and his close colleagues, then they never would have been allowed to evolve into the
foundational building blocks upon which the Web is set. Berners-Lee realized it was
not possible to propose a universal space and simultaneously keep control of it; in
order for the Web to become universal, it was necessary for it to be an open system,
and this was the most groundbreaking characteristic of the architectural principles of
the Web.

1.3 The World Wide Web Consortium — W3C

Of course such an open system did not come without consequence. The world had
been invited to experiment with these easily extendable standards and the danger of
fragmentation quickly arose. With so many diverse contributors, the Web faced the

3 In April of 1993, CERN agreed to allow anyone to use the Web protocol and code royalty-
free [20].
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threat of developing in multiple directions, resulting in an overabundance of hetero-
gencous data; the paramount problem the Web sought to resolve in the first place.
Thus, the openness of the open system showed potential signs of being its own
demise. Berners-Lee realized this necessitated a protagonist that would prove to be
even more influential than his voice alone: the World Wide Web Consortium (W3C).
In October of 1994, W3C was founded as an international consortium consisting of
member organizations and a full-time staff with the goal of developing and maintain-
ing Web standards. W3C’s mission is: 1o lead the World Wide Web to its full potential
by developing protocols and guidelines that ensure long-term growth for the Web.

W3C was by no means the first consortium which set out to develop open tech-
nical specifications; the IETF, for example, predates W3C by almost a decade.
However, unlike the IETF, W3C maintains a full-time staff to help design and de-
velop code, and, since its inception, the W3C membership has been more open and
diverse (accepting both government- and non-government-associated organizations,
industrial and academic groups). While the IETF has evolved in a similar direction,
W3C reaped these benefits from its beginning. Lastly, W3C chose to limit its influen-
tial arm to simply “recommending” (officially “W3C Recommendations™), wary of
using the term “standardizing” since this would slowly defeat the initial open policy
behind the Web itself.

Officially, W3C pursues its mission statement by engaging in education and out-
reach, and by promoting and developing software. Yet its greatest contribution re-
mains the open forum where a properly established consortium can discuss, argue,
and agree on how to move forward rogether. Without such a forum, achieving “Web
interoperability” (the effective umbrella goal of W3C) would not be possible. And so
as utopian as it may sound, the successful tale of the Web sits on the idealistic pillars
of openness and rogetherness.

As with all great developments of human history, the World Wide Web was not
built in a day either; however, its crowning moment of established maturity (or foun-
dation for) can be narrowed down to three days. December 14, 1994 marks a culmi-
nating point in the development of the Web and W3C. It was the date of the first W3C
consortium meeting at MIT. The following day, Netscape Communications Corpo-
ration released a commercial version of Mozilla (the direct descendent of Mosaic),
renamed Navigator 1.0; perhaps Mosaic was the first to bring the Web to nonexpert
users, but Navigator was the first to actually attract a mass number (and market ma-
jority) of users. This achievement has a twofold accreditation: firstly, Netscape was
released over the Internet, rather than the traditional model of actually purchasing
software at a computer store; secondly, Navigator was available free of charge. Marc
Andreessen (one of the original developers of Mosaic, cofounder and then Vice Pres-
ident of Technology for Netscape Communications Corporation) and founding part-
ner James H. Clark were indeed following the same release trend set by other Web
software developers; however, they were the first commercial company to offer their
product “free of charge!” Practically overnight, Andreessen and Clark had set a mar-
ket model to be followed: distribute software online — free of charge (at the very least,
beta versions) — which allows for cheap and quick release cycles; profit is then gained
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through advertisements and additional (charged) services which are presented to the
user when he/she visits the Web site where the product is offered (“‘downloadably™).
Though perhaps unintentionally (since they originally attempted to only provide trial
versions without charging), Andreessen and Clark had stumbled upon both this new
business model and the realization that the Web provided a more profitable platform
for a service company than a software company (a realization that will be further
developed and capitalized upon throughout this book). A slew of Web marketing
strategies and profitable business models would follow; however, these aspects are
slightly beyond the scope of this book.

The final move in the elaborate game leading up to the concrete establishment
of the Web and W3C’s dominant authority came on the December 16. Owing to
budget adjustments which directly reflected CERN’s focus on high-energy physics
rather than Web development, CERN was forced to resign as a W3C host. While
this could be considered a temporary setback to the solidification of W3C, a new
replacement was quickly found: The French National Institute for Computer Science
and Control (INRIA). INRIA already had a credible reputation and proved to be a
suitable replacement.* Although it was never CERN’s intention, this replacement
quickly showed that the W3C was indeed a consortium rather than an organization
solely driven by its bigger members [19].

So the pieces were set in place. In addition to these culminating three days, 1994
was the year the Web successfully edged out Telnet as the most popular service on
the Internet, second to FTP. The following decade would be incredibly fast-paced
as W3C would attempt to always remain one step ahead of the world of develop-
ers it attempts to somehow guide in a general direction. But 1994 had come to a
triumphant close and for the 20-odd members who attended W3C’s first Advisory
Committee meeting that December; one can be sure that their New Year’s resolutions
were hopeful to say the least. As Berners-Lee affectionately puts it, “That bobsleigh I
had been pushing from the starting gate for so long was now cruising downhill [19].”

1.4 Spawning the Semantic Web

Our Web timeline now reaches an introspective point, whereby the potential of the
foundations already in place required evaluation and an analytical synopsis of their
limits. Though the underlying Web infrastructure was still young, the visionaries
behind its creation already foresaw its prospective drawbacks. Essentially, and in
perhaps rudely general terms, the Web at this point had only fulfilled one part of
Berners-Lee’s two-part vision of what it should become. The Web was now a capable
platform for sharing information between two remote human users — what is referred
to as human-to-human communication. The real challenge was to enable the same
communication, but between two machines (and optimistically without any depen-
dency upon human interaction): machine-to-machine communication. The resulting

4 INRIA had already developed a browser/editor that would later become Amaya, W3C’s
flagship Web editor [19].



10 1 From Web to Semantic Web

exemplary Web will be a combination of both these parts, resulting in a paradigm
where “the whim of a human being and the reasoning of a machine coexist in an
ideal, powerful mixture [19].”

The key to enabling machine-to-machine communication is semantics. Seman-
tics, in this context, is not limited to its definition in the field of linguistics (referring
to the study of meaning of linguistic expressions) nor to its prior understanding in
computer science (e.g., referring to the study of the formal semantics of a program-
ming language); it is an extension of both. Semantics is machine-useable content,
and the Semantic Web is the next generation of the World Wide Web which includes
(and of course utilizes) such content. This simple statement opens up an entirely
new paradigm in computer science, one which serves as the cornerstone of the ideas
presented in this book [210].

One particularly important event not mentioned in the previous section was
the first international World Wide Web conference held in Geneva, Switzerland, in
September of 1994, Right out the gate, months before the first W3C meeting (its for-
mation was in fact officially announced at the conference), Bemers-Lee was already
bringing the term “semantics” to the floor. At this carly stage, still 6 years prior
to his laid-out vision of the Semantic Web, and the succeeding article in Scientific
American (which effectively coined the term for the general public), Berners-Lee
addressed the need for semantics in order for machines to move between the Web of
links and nodes in the same fashion as the human user.

1.4.1 Enter XML

As ingenuitive as the foundational protocols of the Web are, they did not quite meet
the “semantic” requirements needed to enable machine-to-machine communication.
A first step in the right direction was the introduction of the Extensible Markup
Language (XML), which successfully arose to supersede the Standard Generalized
Markup Language (SGML) upon which HTML is based. With arbitrary SGML tags,
we could begin to indicate the meaning of particular data directly within the docu-
ment source — this was exactly what was required to successfully share structured
data across different information systems (in contrast to HTML, which can be con-
sidered relatively unstructured/less rich owing to its lack of expressivity, i.e., well-
defined content). XML is simply a SGML subset tailored for the World Wide Web
which imposes certain restrictions (such as closed tags and case-sensitive names)
while still allowing user-defined tags.

User-defined tagnames and attributes in XML allow for easier machine process-
ing; however, such allowance for subjective definitions again opened the door to the
threat of fragmentation. As with all expressive and extensible languages, each time
new tags are introduced within a certain company or research group, for example,
they will only be understood within that certain company or research group. This
would prove to be a hurdle reserved for semantic languages to be later layered on
top of XML, but regardless XML still provided a common, structured format which
allows machines to share data — a standard representational format for documents
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beyond HTML, including typical office documents such as calendars and spread-
sheets (which previously had no widely used standardized interoperable formats).

The official W3C recommendation, XML 1.0, defined as “a system for defining,
validating, and sharing document formats on the Web,” springs us ahead to February
of 1998°. Around the same time came the development of the Resource Description
Framework (RDF), a language specifically designed for representing information
about resources in the World Wide Web. While XML provided the stepping stones
towards machine-processable, RDF attempted to lay the bridge towards machine-
understandable

Again, XML is a common, structured format which allows machines to share
data; however, it still does not hold any true semantic meaning. It remains simply
a syntactic language. While it does provide a stricter separation between content
and layout, RDF was necessary in order close in on real machine-processable Web
content and interoperable services. Unlike other references in the literature, we do
not include XML per se as a particular language of the “Semantic Web,” but instead
consider the family of standards around XML an intermediate step towards a real
machine-processable Web infrastructure [77].

1.4.2 Enter RDF

RDF turns out to be an excellent complement to XML, providing a language for
modeling its semistructured building blocks: metadata. Metadata is simply “data
about data,” or more specifically, in the context of the Web, metadata is “data de-
scribing Web resources.”® RDF uses such metadata to make statements about Web
resources (even those resources which are perhaps not retrievable, but which are
identifiable thanks to URIs) in the form of subject—predicate—object expressions as
shown in Fig. 1.2.

These subject—predicate—object triples, commonly written as P(S,0), serve as the
basis of the RDF metadata model. In accord with English grammar, the subject deno-
tes a resource and the predicate denotes certain properties of this particular resource
(the subject), which resultantly expresses a relationship between the subject and the
object (which also denotes a particular resource, literal, or blank node). An object of a
triple can in turn function as the subject of another triple, yielding a directed labeled
graph, where resources (subjects and objects) correspond to nodes and predicates
correspond to edges. Furthermore, RDF allows a form of reification (a statement

Subject )__Predicate Object

Figure 1.2. RDF graph data model. (Reproduced from [127])

® http://www.w3.org/Press/1998/XML10-REC
6 http://www.w3.org/Press/1999/RDF-REC
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firstName

hasName

Figure 1.3. Example RDF graph. (Reproduced from [77])

<rdf:RDF xmins:rdf="http://www.w3.0rg/1999/02/22 —rdf —syntax —ns#”
xmins:ex="http://example.org/#"
xml:base="http://example.org/”>
<rdf:Description about="#john">
<ex:hasName rdf:parseType="Resource” >
<ex:firstName>John</ex:firstName >
<ex:lastName >Smith</ex:lastName >
</ex:hasName>
</rdf:Description>
</rdf:RDF>

Figure 1.4. Example RDF/XML. (Reproduced from [77])

about a statement), which means that any RDF statement can be used as a subject
in a triple. Figures 1.3 and 1.4 show an example RDF graph and its corresponding
RDF/XML serialization.

1.4.3 Enter Ontologies

The proclaimed backbone of the Semantic Web, when layered upon RDF and XML,
is ontologies. In the early 1990s, ontologies had shifted from a philosophical topic
(“a theory about the nature of existence, of what types of things exist”) [22] to an
applicable concept of applied artificial intelligence. In simple terms, the latter case
utilizes ontologies as formal structures which facilitate knowledge sharing and reuse.
The technical definition is as follows: “An ontology is a formal, explicit specification
of a shared conceptualization [90].”

This definition uses conceptualization to refer to an abstract model of some phe-
nomenon in the world which identifies the relevant concepts of that particular phe-
nomenon. Explicit, in this sense, refers to the restriction of concepts, types, and
their usage constraints. Formal simply implies that a necessary standardized syn-
tax (with specified semantics) is required in order to achieve “machine-readability.”
Finally, shared implies that an ontology must reflect consensual knowledge rather
than simply the opinion of an individual ontology engineer. Thus, an ontology is
an abstract model of some phenomenon in the world which identifies the relevant
concepts of that particular phenomenon, using a restricted set of concepts, and a
specified machine-readable syntax, in order to portray the consensual interpretation
of the particular phenomenon [72]. Once again, the most advantageous aspect of an
ontology is it is most informal, i.e., the fact that it is a consensual product.
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However, as is sufficiently summarized in [72], an ontology is as much a pre-
requisite for consensus as a result of it. An intersubjective consensus is required in
order for agents (be it a user or a program) to exchange semantic information in the
first place. And this consensus can only result from a social process (open forum,
discussion, debate, and a resulting consensual taxonomy). Such a definition places
ontologies is a very unique (but growing) category of computer science; one which
heavily depends upon the social sciences, a field which has essentially evolved into
what many colleges and universities now refer to as “interdisciplinary studies.”

Ontologies proved to be the “missing link” that successfully interwove human
and machine understanding. This is achieved via a set of defined terms and rela-
tions which can be interpreted by both humans and machines. The meaning for the
human is presented by the term itself, which is usually a word in a natural language,
and by the semantic relationships between the terms. An example of such a human-
understandable relationship is the superconcept-subconcept relationship (often de-
noted with the term “is-a”). This relationship denotes the fact that one concept (the
superconcept) is more general than another (the subconcept). For instance, the con-
cept person is more general than student or researcher. Figure 1.5 shows an example
“is-a” hierarchy, where the more general concepts are located above the more spe-
cialized concept.

The utility of an ontology stems from two powerful aspects: a set taxonomy and
a set of inference rules. The aforementioned “set of defined terms and relations”
comprises the taxonomy; or, more specifically, a taxonomy provides a vocabulary of
defined classes of objects and relations among them, with which one is able to model
a particular domain. Terms such as class, subclass, and relations allow hierarchies
to be created between entities, and furthermore, their semantics can be understood
by both humans and machines. A taxonomy, however, is only as powerful as its
underlying logic: more or less, a collection, or set, of inference rules.

Inference rules in ontologies supply further expressivity; they are what extend
ontologies beyond other previous data structures, such as relational databases and
legacy system, for these inference rules allow for automated reasoning. Knowledge

is-a
is-a

instance-of instance-of

| Mary | | Jack |

Figure 1.5. Example “is-a” hierarchy taxonomy. (Reproduced from [77])
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representation and automated reasoning had long since been exciting topics for
artificial-intelligence researchers; however, they had yet to break ground beyond im-
pressive demonstrations. In order for such technologies to realize their full potential,
they must be linked into a single global system: the Web.

With the combination of ontologies, layered on top of XML and RDEF, and the
exponentially growing Web at the turn of the twentieth century, the stage was set
for the Semantic Web. And so we again return to Berners-Lee, who again craftfully
clustered together the already flourishing results of the W3C — in a fashion quite
similar to his simple combination of the Web-enabling protocols — in order to lay out
his vision of the Semantic Web, the next generation of the World Wide Web.

1.5 The Semantic Web

The Semantic Web is not a separate Web but an extension of the current
one, in which information is given well-defined meaning, better enabling
computers and people to work in cooperation.

The Semantic Web — Scientific American, May 2001

By February of 1999, RDF became an official W3C Recommendation’ and XML
thrived to the point where the XML 2000 conference boasted its status as the histor-
ical premier IT event.

It was at this conference, during the “Knowledge Technologies” session that
Berners-Lee gave his opening keynote presentation entitled “RDF and the Seman-
tic Web.” In short, in accord with the session summary, his simple proposal was
that RDF, and its provision of interoperability between applications (machine-to-
machine communication), would enable automated processing of Web resources and
serve as the foundation for the “Semantic Web.” However, this session turned out
to be more than a simple proposal. It was, in all its grandeur, the capstone to the
already-developing Semantic Web. Berners-Lee clearly laid out the necessary steps
and fundamental architecture essential for the next generation of the Web; and for
the first time researchers were able to begin referencing the famous “Semantic Web
layer cake.”

1.5.1 The Semantic Layer Cake

The “Semantic Web layer cake” — which has now evolved into a more precise,
oddly stacked layering of expressivity and functionality (its current state shown in
Fig. 1.6%) — would not only serve as a fundamental architecture, but also as a vision-
ary roadmap to the development of the Semantic Web.

7 http://www.w3.org/Press/1999/RDF-REC
8 The original layer cake, presented at the XML 2000 conference can be found at
http://www.w3.0rg/2000/Talks/1206-xml2k-tbl/slide10-0.html
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Figure 1.6. The Semantic Web layer cake

Syntactic Foundation
URI/IRI Layer

The bottom layer in the layer cake, the URI/Internationalized Resource Identifier
(IRI) layer, sits upon Unicode, which provides a syntactical basis for the Seman-
tic Web languages, allowing machines to process data directly. Unicode provides
an elementary character-encoding scheme, which is used by XML, as well as other
upper-level languages. The URI standard provides a means to uniquely identify and
address documents, concepts, objects, and relations (more generally, resources on
the Web) specified in the upper layers and essentially ground them to Unicode. This
foundational layer ensures that all concepts used in the languages that complete the
cake can be specified using Unicode and are uniquely identified by URIs [192].

XML Layer

As XML progressed as one of the fastest developing Web standards, multiple XML-
related recommendations came to the forefront of W3C forum discussions; and the
collection of these recommendations, some of which are in fact the core of XML,
would comprise the XML layer of the architecture. Some of these recommendations
included:

e Namespaces: XML namespaces are an integral part of the overall language.
Namespaces provide a simple method for qualifying element and attribute names
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in an XML document. By utilizing URIs, namespaces are able to take full advan-
tage of URI’s universality.’

e XML Schema: An XML schema describes the structure of XML documents.
It expresses a shared vocabulary and allows machines to carry out rules made
by people. It entails data typing and constrains document structure to maintain
predictable computable processing. Beyond explicitly describing the structure of
XML documents, XML Schema provides a means for defining the content and
semantics as well.!”

e XML Query: XML Query (or XQuery), as defined by the W3C Architecture
domain, is a standardized query language for “combining documents, databases,
Web pages and almost anything else.” XQuery provides flexible query facilitics
to extract data from real and virtual documents on the World Wide Web; there-
fore, finally providing the needed interaction between the Web world and the
database world. Ultimately, this standard will allow collections of XML files to
be accessed like databases.

Conclusively, the XML layer still only provides a basic format for structured
documents. And while this layer is of course essential, as its foundational position-
ing implies, it is still a layer below the “good stuff.” It remains a language with no
particular semantics.

Semantic Base
Data Interchange Layer: RDF

The data interchange layer provides a basic assertion model which added concepts
of assertion (property) and quotation to the layered architecture. In order for asser-
tions to be made, the semantics provided by RDF were necessary. By utilizing the
semantics assertions via propositional logic, this layer allows an entity—relationship-
like model to be made for data represented and exchanged via the Web. At this level,
simple data integration, aggregation, and interoperability are enabled by a collec-
tion of RDF standards. An increasing need for interoperability at a more expressive
descriptive level is still desired, and so we clamber higher in the layers of the cake.

RDF Schema Layer: RDFS

RDF’s limit to expressing simple statements about resources, using named proper-
ties and values, required an additional specification in order to define the vocabularies
(terms) they intended to use in those statements. More precisely, a schema was re-
quired to indicate that they are describing specific kinds or classes of resources, and
will use specific properties in describing those resources. This was fulfilled when
RDF Schema became a W3C Recommendation in February of 2004.!! RDF Schema

% http://www.w3.0rg/TR/REC-xml-names/
10 http://www.w3.org/XML/Schema
' http://www.w3.org/TR/rdf-schema/
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took the basic RDF specification and extended it to support the expression of struc-
tured vocabularies. In contrast to an XML schema, which prescribes the order and
combinations of tags (the structure) in an XML document, an RDF schema provides
information about the interpretation of the statements given in an RDF data model
without constraining the syntactical appearance of the RDF description. For a more
detailed comparison of XML Schema and RDF Schema we refer the reader to [124].
Essentially, these extensions to the knowledge representation language provided the
minimal elements of an ontology representation language; one which the research
community quickly adopted and began to further extend [192]. These minimal el-
ements are indeed quite powerful: basic (frame-based) ontological modeling prim-
itives, such as instance-of, subclass-of, and subproperty-of relationships, had been
introduced and this allowed for structured class and property hierarchies.

Ontology Layer: OWL

Directly on top of the RDF Schema layer sits the most innovative and effective layer
of the cake: the ontology layer — Web Ontology Language (OWL). The XML layer is
sufficient for exchanging data between parties who have agreed to definitions before-
hand; however, their lack of semantics prevents machines from reliably performing
this task given new XML vocabularies. The RDF Schema layer begins to approach
this problem by allowing simple semantics to be associated with identifiers. With
RDF Schema, one can define classes that may have multiple subclasses and su-
perclasses, and can define properties which may have subproperties, domains, and
ranges. In this sense, RDF Schema is a simple ontology language. However, in order
to achieve interoperation between numerous, autonomously developed and managed
schemas, richer semantics are needed.

The ontology layer adds more vocabulary for describing properties and classes:
among others, relations between classes (e.g., disjointness), cardinality (e.g.,
“exactly one”), equality, richer typing of properties, characteristics of properties
(e.g., symmetry), and enumerated classes are incorporated into the semantics of
the ontological language. The W3C Web Ontology Working Group that set out to
provide a specification for this layer had the following design goals of implementing
this layer included:

e Shared ontologies: Ontologies should be publicly available and different data
sources should be able to commit to the same ontology for shared meaning. Also,
ontologies should be able to extend other ontologies in order to provide additional
definitions.

e Ontology evolution: An ontology may change during its lifetime. A data source
should specify the version of an ontology to which it commits.

e Ontology interoperability: Different ontologies may model the same concepts
in different ways. The language should provide primitives for relating different
representations, thus allowing data to be converted to different ontologies and
enabling a “Web of ontologies.”
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e Inconsistency detection: Different ontologies or data sources may be contradic-
tory. It should be possible to detect these inconsistencies.

e Balance of expressivity and scalability: The language should be able to express a
wide variety of knowledge, but should also provide for efficient means to reason
with it. Since these two requirements are typically at odds, the goal of OWL is
to find a balance that supports the ability to express the most important kinds of
knowledge.

e Ease of use: The language should provide a low learning barrier and have clear
concepts and meaning. The concepts should be independent from syntax.

e Compatibility with other standards: The language should be compatible with
other commonly used Web and industry standards. In particular, this includes
XML and related standards (such as XML Schema and RDF), and possibly other
modeling standards such as UML.

e Internationalization: The language should support the development of multilin-
gual ontologies, and potentially provide different views of ontologies that are
appropriate for different cultures [101].

Meeting these requirements was no easy task, but the resulting specification,
OWL, provided a new level of semantic expressiveness, one that overshadowed the
the primitives of RDF Schema. Owing to their important role in the Semantic Web ar-
chitecture, Section 1.5.2 provides further background and application of ontologies.

Query and Rule Layers: RIF and SPARQL (and Ontologies)

These two layers are grouped together, not to diminish their necessity or contribution,
but rather because the two layers have quite a bit in common, with various overlaps,'?
and both are fairly new (as of June 14, 2007, SPARQL, Query Language for RDF, has
reached the status of W3C Candidate Recommendation'? and as of this publication,
the RIF Core Design is only a W3C Working Draft'4).

SPARQL provides the engine to the the underlying RDF structures; after all, a
data language is powerless without a query language. The SPARQL specification
defines the syntax and semantics of the SPARQL query language for RDF with the
following features:

e Express queries across diverse data sources, whether the data is stored natively
as RDF or viewed as RDF via middleware

e Query required and optional graph patterns along with their conjunctions and
disjunctions

e Support extensible value testing and constraining queries by source RDF graph
Provide resolved queries as results sets or RDF graphs

12 Originally, “query” and “rule” were included in the “logic layer” of the Semantic Web layer
cake, now replaced by the “unifying logic layer” above the two.

13 http://www.w3.0rg/TR/2007/CR-rdf-sparql-query-20070614/

M http://www.w3.0rg/TR/2007/WD-rif-core-20070330/
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The rule layer provides an interchange format for different rule languages and
inference engines. Rules had long been seen as an important paradigm for repre-
senting and reasoning with knowledge on the Semantic Web.!> In 2005, The Rule
Interchange Format W3C Working Group set out with the following motives:

e Rules themselves represent a valuable form of information for which there is
not yet a standard interchange format. Rules provide a powerful business logic
representation, as business rules, in many modern information systems

e Rules are often the technology of choice for creating maintainable adapters be-
tween information systems

e As part of the Semantic Web architecture, rules can extend or complement the
OWL to more thoroughly cover a broader set of applications, with knowledge
being encoded in OWL or rules or both [100].

The Semantic Web Rule Language (SWRL) [105] is an extension of OWL DL
which adds the expressive power of rules (without negation) to OWL; the mentioned
uncle example can be expressed in SWRL.

The basic SWRL constructs are Horn-like rules. However, whereas Horn rules
have a conjunction of atomic formula in the antecedent (body) of the rule and a
single atomic formula in the consequent (head) of the rule, SWRL allows any OWL
class description, property, or individual assertion in both the body and the head of
the rule. In this way, SWRL diverges from the traditional rules systems which are
based on logic programming or deductive databases.

Because SWRL combines the full expressive power of function-free Horn logic
with an expressive description logic language, the key inferences tasks (¢.g., satisfi-
ability, entailment) are in general undecidable for SWRL.

F-logic [121], and, more specifically, the Horn subset of F-logic extended with
negation, has been proposed as an ontology and rule language for the Semantic Web
[119]. Rules in F-logic are similar to Horn rules, with the distinction that besides
atomic formulae, F-logic rules also allow molecules in place of atomic formulae.
Note that although the syntax of F-logic seems higher order, the language semanti-
cally stays in the first-order framework.

An important concept in F-logic is object identity [118]. Each object (e.g., class,
instance, method) has a unique object identifier, where an object identifier is in fact a
term. In F-logic, classes and methods are interpreted intentionally, which means that
class identifiers and method identifiers are interpreted by themselves and not directly
as sets or as binary relations, as is the case with concepts and roles in description
logics. Classes and methods are first interpreted as objects in the domain and these
objects are then related to sets of objects and sets of binary tuples, respectively.

The following simple F-logic ontology (Listing 1.1) models the concept person
which has an attribute child with type person. The concept parent is a subconcept
of person and the rule states that every person with a child is a parent.

'5 http://www.ruleml.org/
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Listing 1.1. Example F-logic ontology. (Reproduced from [77])

person[child =>> person].
parent::person.

X:parent :— X[child —>> Y], X:person.

Here it is pertinent to note that in F-logic there is no distinction between classes
and instances. An object identifier can denote a class, an instance, or an attribute, but
there is no separation in the signature 3. for the identifiers denoting either. The ad-
vantage of such an overloading object notion is that objects denote classes, instances,
and attributes depending on the syntactic context, thereby allowing certain kinds of
metastatements.

Both SWRL and F-logic have been proposed as rules languages for the Semantic
Web. The main difference between the two proposals is that in SWRL, the rules
language is seen as an extension of the ontology language OWL DL, whereas in the
F-logic (programming) proposal, ontologies are modeled using rules [77].

Unifying Logic Layer

As laid out in the presentation entitled “The Semantic Web,”!¢ as of 2002, the then
logic layer was at such a status:

Universal language for monotonic logic

Any rule system can export, generally cannot import
No one standard engine — inference capabilities differ
Many engines exist (SQL to KIF, Cycl, etc.)

Any system can validate proofs

Web assumptions different from closed world

The unifying logic layer turns a limited declarative language into a Turing-
complete logical language, with inference and functions. This is powerful enough
to be able to define all the rest, and allow any two RDF applications to be connected
together. One can see this language as being a universal language to unify all data
systems just as HTML was a language to unify all human documentation systems.

Proof, Trust, Crypto, and Application Layers

The proof layer will provide an RDF-based language which allows assertions to be
exchanged. These exchanged assertions will allow applications such as access con-
trol to use a generic validation engine as the kernel, with very case specific tools for
producing proofs of access according to a set of defined agreement. The trust layer
is then an extension of this validation; meanwhile, all the semantic languages are
effected by the vertical crypto “layer” and the user interface and applications have
the obvious seat on top. These final levels of the Semantic Web architecture are still
fairly underdeveloped, as their specification and functionality depends entirely upon
the further development of the lower, foundational layers.

16 http://www.w3.0rg/2002/Talks/04-sweb/slide1-0.html
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1.5.2 Ontologies and the Semantic Web

A key feature of ontologies is that they, through formal, real-world semantics and
consensual terminologies, interweave human and machine understanding [72]. This
important property of ontologies facilitates the sharing and reuse of ontologies
among humans, as well as machines.

According to [72], “The explicit representation of the semantics underlying data,
programs, pages, and other Web resources will enable a knowledge-based Web that
provides a qualitatively new level of service.” Ontologies provide such an explicit
representation of semantics. The combination of ontologies with the Web has the
potential to overcome many of the problems in knowledge sharing and reuse and
information integration.

These relationships represented in an ontology are fairly easy to understand for
the human reader and because the meaning of the relationships are formally defined,
a machine can reason with them and draw the same conclusions a human can. These
relationships, which are implicitly known to humans (e.g., a human knows that every
student is a person) are encoded in a formally explicit way so that they can be under-
stood by a machine. In a sense, the machine does not gain real “understanding,” but
the understanding of humans is encoded in such a way that a machine can process it
and draw conclusions through logical reasoning.

Ontologies — The “Shared” Aspect

In order to accommodate one of the most important characteristic of ontologies, the
“shared” aspect, ontologies can be layered upon one another, whereby each layer
caters to a different level of generality. Conclusively, domain experts, users, and de-
signers need only agree upon relevant specific domain and application ontologies, as
well as upon the higher-level ontologies that are being used, rather than attempt to
achieve a global, all-inclusive conceptualization [145].

In the literature [72, 92, 102, 204] we generally find three common layers of
knowledge. Based on their levels of generality, these three layers correspond to three
different types of ontologies, namely:

e Generic (or top-level) ontologies, which capture general, domain -independent
knowledge (e.g., space, time,). Examples are WordNet [71] and Cyc [135].
Generic ontologies are shared by large numbers of people across different
domains.

e Domain ontologies, which capture the knowledge in a specific domain. An exam-
ple is UNSPSC,!” which is a product classification scheme for vendors. Domain
ontologies are shared by the stakeholder in a domain.

e Application ontologies, which capture the knowledge necessary for a specific
application. An example could be an ontology representing the structure of a
particular Web site. Arguably, application ontologies are not really ontologies,
because they are not really shared.

7 http://www.unspsc.org/
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The separation between these three levels of generality is not always strict.
Although sometimes other types of ontologies, such as representational ontologies or
task ontologies, are distinguished, the above three types of ontologies are common in
the literature and are in our opinion a useful separation of types of ontologies along
the dimension of generality [77].

Expressiveness in Ontologies

Ontologies can also be categorized in accord with their expressiveness. One inter-
pretation of how to distinguish several levels of expressiveness is presented in [144]
as such:

Thesaurus: Relations between terms, such as synonyms, are additionally provided.
Again, WordNet [71].

Informal taxonomy: There is an explicit hierarchy (generalization and specialization
are supported), but there is no strict inheritance; an instance of a subclass is
not necessarily also an instance of the superclass. An example is the Yahoo!
dictionary.'®

Formal taxonomy: There is strict inheritance; each instance of a subclass is also an
instance of a superclass. An example is UNSPSC."?

Frames: A frame (or class) contains a number of properties and these properties
are inherited by subclasses and instances. Ontologies expressed in RDF Schema
[29], described later, fall in this category.

Value restrictions: Values of properties are restricted. Ontologies expressed in OWL
Lite (see the section on ontology language later) fall in this category.

General logic constraints: Values may be constrained by logical or mathematical
formulas using values from other properties. Ontologies expressed in OWL DL
(see the section on ontology language later) fall in this category.

Expressive logic constraints: Very expressive ontology languages such as those seen
in Ontolingua [69] or CycL [135] allow first-order logic constraints between
terms and more detailed relationships such as disjoint classes, disjoint cov-
erings, inverse relationships, part—-whole relationships, etc. Note that some of
these detailed relationships such as disjointness of classes are also supported by
OWL DL (and even OWL Lite), which indicates that the borders between the
levels of expressiveness remain fuzzy.

History of Ontology Languages

In the areas of knowledge engineering and knowledge representation, interest in on-
tologies really started taking off in the 1980s with knowledge representation systems
such as KL.-ONE [27] and CLASSIC [26].

An important system for the development, management, and exchange of on-
tologies in the beginning of the 1990s was Ontolingua [69], which uses an internal

'8 http://www.yahoo.com/
19 http://www.unspsc.org/



1.5 The Semantic Web 23

Knowledge Interchange Format?® (KIF) representation, but is able to interoperate
with many other knowledge representation (ontology) languages, such as KL-ONE,
LOOM, and CLASSIC.

The languages used for ontologies were determined by the tool used to create
the ontologies. Systems like KL-ONE, CLASSIC, and LOOM each used their own
ontology language, although the Ontolingua system was capable of translating on-
tologies between different languages, using the KIF language as an interchange lan-
guage. We can see the languages and tools as being interdependent, but also as being
somewhat orthogonal, where we have the language on one axis and the tool on the
other. For example, KL-ONE, CLASSIC, and LOOM all have their basis in descrip-
tion logics [10], while KIF has its basis in first-order logic.

In the early 1990s, KIF could be seen as a standard for ontology modeling. The
language was used in prominent tools such as Ontolingua and in important ontol-
ogy engineering projects, such as Toronto Virtual Enterprise (TOVE) [91] and The
Enterprise Ontology [211].

Later on in the 1990s, ontologies began to be applied to the World Wide Web.
SHOE [102], for example, used Ontologies to annotate Web pages using formal on-
tologies embedded in HTML documents. Ontobroker and its successor On2broker
[74] use ontologies to not only annotate Web pages, but also to formulate queries and
derive answers. Ontobroker and On2broker provide an annotation language which is
used to annotate HTML documents with references to ontologies. The ontology, the
terminology used by the annotation language, is specified using the representation
language, based on F-logic [121]. Finally, Ontobroker uses a query language for the
retrieval of documents based on their annotations. This query language is a subset
of the representation language. All these languages have their impact on the current
languages on the Semantic Web.

Web Ontology Language

OWL [58] is an expressive ontology language which extends RDF Schema. OWL
itself consists of three species of increasing expressiveness:

1. OWL Lite: The least expressive of the OWL species. Compared with RDF
Schema it adds local range restrictions, existential restrictions, simple cardinal-
ity restrictions, equality, and different types of properties (inverse, transitive, and
symmetric).

2. OWL DL: Compared with OWL Lite, OWL DL adds full support for (classical)
negation, disjunction, cardinality restrictions, enumerations, and value restric-
tions. The name “DL” comes from the resemblance to an expressive description
logic language [10], namely, SHOZN (D).

3. OWL Full: Where OWL Lite and OWL DL pose restrictions on the use of vocab-
ulary and the use of RDF statements, OWL Full does not have such restrictions.
Therefore, OWL Full allows both the specification of classes as instances and

20 hitp://logic.stanford.edu/kif/kif html



24 1 From Web to Semantic Web

the use of language constructs in the language itself, which thereby modifies the
language.

For OWL Lite, it turns out that although there are many syntactic restrictions in
the language, the actual expressiveness of the language is very close to the expres-
siveness of OWL DL [106]. OWL Full is a very expressive language and because of
the syntactic freedom which is allowed in the language, key inference problems are
undecidable.

1.6 The Semantic Web — Future Prospects

While W3C was busy specifying and recommending, the ever-growing Web user/
developer community was not about to wait in the wings. Entire Web-based commu-
nities were beginning to merge. Social networks became the newest trend, and re-
main thriving as of this publication. New technologies such as wikis, weblogs, Folk-
sonomies, RSS feeds, and sites laden with dynamic, multimedia collections came
on the scene without the collaborative efforts and consensual guidance provided for
the W3C-promoted technologies. These technologies were grouped together under
the umbrella term “Web 2.0” even though there was never any formal update to a
previous technical specification.

According to [163], the concept of Web 2.0 began with a conference brainstorm-
ing session between O’Reilly and MediaLive International and later spurred the Web
2.0 Summit, the fourth of which was held in October of 2007. Web 2.0 originally
focused on the Web as a content platform; the goal was to find a way to present more
relevant data to the user. Users quickly bought into this interactive model and Web 2.0
was immediately recognized as a foundation upon which thousands of new forms of
business would emerge. Web sites such as Flickr?! which depend upon users’ tagged
data began to thrive. Sites such as YouTube?? do not in fact offer a product; rather
they are services which provide a way to view videos uploaded by other users. This
was an entirely new business model; one which evolved from simply utilizing the
enabling protocols of the World Wide Web. Of course this simple point somewhat
jeopardizes the justification of coining the term “Web 2.0 if it is nothing more than
an application (or implementation) of the foundational architectural principles laid
out back in 1994.

The continued development of the Semantic Web will incorporate the content-
laden Web 2.0? into its layered architecture and a rumored “Web 3.0” may come
into existence; however, at the time of publication the term “Web 3.0” had only just
begun to appear in credible computer science magazines. The Semantic Web will
begin to fully utilize services provided on the Web, and these Semantic Web Services
will prove to be the key elements of SESA.

21 http:/rwww.flickr.com

22 hitp://www.youtube.com/

23 If one concludes they are in fact distinct, or that this “incorporation” has not already been
completed.
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1.7 Summary

And so our whirlwind Web timeline then breeches upon the close of a decade with
the foundations for SESA steadily holding ground. In this chapter we have briefly re-
viewed the development of the World Wide Web, and its evolution into the Sematic
Web. We have surveyed the advance of many essential semantic technologies, lan-
guages, and protocols, we have established the necessity of both human-to-human
and machine-to-machine communication across the Web, and we have presented a
brief outline of the Semantic Web architecture (based on the Semantic Web layer
cake).

The goal of this chapter was to provide a brief overview of the essential Web
developments leading up to the status quo, because these developments form the
foundation upon which SESA sits. Without the specifications and architectural prin-
ciples that comprise the Semantic Web, SESA is not achievable.

The remaining chapters of this book provide a further detailed look at more ex-
pressive semantic languages and higher-level semantic tools, as the building blocks
for SESA slowly come together, resulting in a comprehensive analysis of SESA and
its components.
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Semantic Web Services

The Semantic Web transforms the current, syntactic Web into a Web that is aware
of and fully utilizes explicit semantics in order to overcome the prevalent mis-
matches in understanding and integration of data structures and data vocabulary.
With a Semantic Web as a fundamental basis it is possible for human users to find
meaningful data and to interact with the Web in a semantically defined and precise
way. Going beyond data and information processing, Web Services bring the aspect
of dynamic and distributed computation into the current Web by making the Web
infrastructure a device for distributed computing on a worldwide scale. However,
Web Services, like the current Web, are syntactic in nature, making even simple dy-
namic composition and computation impossible in an automated fashion, let alone
real and complex applications. Therefore, it is necessary to combine the Semantic
Web and Web Services into a new paradigm named Semantic Web Services that sup-
ports not only distributed computation, but also dynamic discovery and computation
of services, ultimately leading to goal-based computation that is fully declarative in
nature. This chapter motivates the need for Semantic Web Services and outlines the
vision of semantic computation.

2.1 Behavioral Perspective of the World Wide Web

The World Wide Web (abbreviated as WWW or Web) originated from the need for
human communication and ease of distributed and worldwide data access. Conse-
quently the software technology that was put in place supporting Web pages focused
on presenting data syntactically to human users. While initially static data was the
focus, later on support for dynamic data was added, ultimately leading to the inte-
gration of different Web pages displaying different aspects of dynamic data to the
same human user, leading to the need for semantic support for homogenous Web
page vocabulary in addition to syntactic data display.

It became quickly clear that the Web infrastructure can be used for computer-
to-computer communication too, which does not involve a human element at all.
Instead, the machine equivalent of Web pages was designed and enabled in the form
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of remotely accessible procedures. A prominent domain in this space is Business-to-
Business (B2B) and Enterprise Application Integration (EAI) [32] where computer-
to-computer communication is central to achieving integration.

In the following, this transition from single syntactic Web pages to dynamic and
integrated Web pages requiring semantics and subsequently the support for machine-
accessible functionality is outlined in more detail as a precursor to the discussion of
Web Services in the next section.

2.1.1 Need for Behavior
Human Web

In the very beginning of the Web a human user could request static data by providing
a Universal Resource Locator (URL) to a so-called Web browser which took the
URL and accessed the data that the URL identified. The data in the form of a Web
page could reside in a local or a remote computer system as URLs can address Web
pages for both cases. That data was encoded using HTML in such a way that the data
was displayed nicely for human users so that they are able to read it in their specific
cultural expectation and setting.

This approach of “static data lookup” was reaching its limits very quickly and
the first efforts started right away to include dynamic data that changed more or less
frequently. This means that data values are looked up from persistent stores or data
feeds rather than being hard coded in a file-based Web pages described with HTML.
Human users have an interest in much dynamic data and want to observe the state
changes. These include weather reports, stock price lookup, upcoming metro line
arrival times, as well as the status of a coffee machine to save an unnecessary round
trip to the coffee kitchen (which was one of the first research applications), just to
name a few.

In more technical terms, whenever a human user requests a Web page the
dynamic data is not encoded statically but has to be looked up from a state-keeping
system every time the page is retrieved. This can be a database, a file in a file sys-
tem, a queue implementing a data feed, a function call result, the status of a wireless
sensor or RFID tag, and so on. Once the data is derived dynamically it is put into its
predetermined place on the Web page before being sent back to the browser of the
human user.

In many cases a human user is not interested in all available data in a data set.
For example, when looking up the status of a specific flight, a human user is usually
interested in a particular flight, not all the existing flights of an airline. In order for
a human user to indicate the specific flight, an input field is offered to him where he
can provide the flight number or place of origin and destination. That would give him
the status of all flights with this particular flight number. Usually this is still too much
information and so human users are usually requested also to provide the particular
day and/or time of the flight that they wish to look up. These input parameters are
then used to qualify the dynamic data lookup and the restricted result set is then
added to the Web page before being sent back to the human user.
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In fundamental terms this is a functional interface with input and output paramet-
ers where the human user is the source of the input parameter and the consumer of the
output parameters. Even that proved to be not enough functionality and procedural
interfaces for human users were needed too, where input from a human user not only
qualifies data lookup but also causes state changes. For example, subscribing to a
newspaper is a procedural interface where a user selects the newspaper, subscription
terms, and payment method. The publisher of the newspaper then acts accordingly
once the funds have been received.

Whenever data is requested from a user some validation is commonly imple-
mented to ensure that the user-provided data is consistent and correct in the context
of the function or procedure. Sequencing becomes important too, as in the case of the
newspaper ordering payment has to happen first before the delivery of the newspaper
is scheduled. Error situations for procedural situations have to be understood so that
partial progress can be recovered from when a system failure occurs. In the end, for
economically useful applications, the simple Web infrastructure was not adequate
and a lot more technology was necessary in order to deal with all relevant aspects.
This is even more essential for a Web that deals not only with human users but also
with software systems as communicating entities.

Machine Web

The Web infrastructure is not really targeted at human users only, even though human
user applications were the first applications to appear. The same infrastructure can be
used for software systems to communication with each other, also termed machine-
to-machine communication. Essentially, software systems also use procedural inter-
faces in order to communicate with each other.

The main difference is that the result sets are not constructed for human user
consumption, meaning that test layout and graphical elements are completely miss-
ing. Once a software system has obtained one or more results from other software
systems, it can use these results to do its internal data processing to further use the
results. In this sense the Web infrastructure is used as a worldwide remote invocation
mechanism of functionality provided anywhere on the Web. !

For two software systems to understand each other it is necessary that both agree
on the same data types as well as on precisely the same syntax used for exchanging
messages. Without an agreement on the exact same structures, the receiving software
system will not be able to parse and reconstruct the in-memory representation and
the communication fails. This is in stark contrast to human user specific data where
imprecise or ambiguous data structures can be compensated for by the human user
because of the cognitive ability for error compensation. For example, if a Web page
layout is not “nice,” a human user can still understand it and interpret it sensibly.

A software system can also combine the results obtained through various remote
invocations and display them to a human user, possibly using its own data for further

L As software does represent data in data structures and not Web pages the term “machine
pages” is not used, even though it would be the symmetric equivalent to human user Web

pages.
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data lookup or modification. In this situation the software combines data from dif-
ferent sources before providing a human user representation of it. For example, the
value of stock symbols is displayed not in isolation to a human user, but in context
with an investment banking Web page that automatically detects the stock a human
user has invested in and displays the value for only those stock symbols. So the busi-
ness logic that displays the value and holdings of the investment account looks up
the prices of the stock symbols remotely for further processing.

Challenges

The human Web and machine Web have specific challenges to overcome. Currently
solutions to various degrees of satisfaction exist for those. The main challenges are:

e Syntax. For the machine-to-machine communication in the machine Web the
syntax that software systems use to exchange messages has to be precisely de-
fined so that the sending software and the receiving software have the precise
same syntactical representation. This requires that all software systems involved
in a particular remote communication agree on the same exchange syntax.

e Semantics. Even if the syntax is precisely defined and agreed upon, the semantic
content of data structures can be mismatching between a provider and an invoker
(or also termed callee and caller) of functionality. A date data type, if interpreted
the wrong way, could, for example, mix up the day and the month value, lead-
ing to wrong data (in case of day—month combinations that are both valid like
February 3) or system failures (for example, when a day of 17 and the month
of May are mixed up). This requires an explicit representation of the semantics
of the data values such that a misinterpretation is minimized, if not eliminated
completely.

e Combination of Web pages. Human users navigate from Web page to Web page.
If several Web pages cover different aspects of the same data then it is important
that the vocabulary used on the Web pages is coherent across the different Web
pages even though those Web pages are not provided by the same provider. For
example, if a user navigates between the pages of his investment account, the
pages for checking accounts, savings accounts, retirement accounts, and stock
investment accounts should at least share the same terminology, even if in the
background these different products are provided by different organizations that
are distributed across the country or the world. If not, the user is constantly con-
fused about the meaning of a particular entry on a particular Web page. This
fundamentally requires transformation between vocabularies in case the various
products are based on different ones so that from a user perspective the vocabu-
lary is consistent.

e Combination of machine functions. Like human users navigate from page to
page, a software system can invoke several functions or procedures in order to
obtain the results it needs. In this case it is very likely that each function or
procedure is based on its own vocabulary and like in the case of Web pages the
combination of the data is only consistent if it is possible to transform the data
from one vocabulary into another one.
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e Combination of Web pages and machine functions. In real software systems
there is in the general case always a combination of Web pages and machine
functions in order to provide the full required functionality. From a syntactical
and semantics viewpoint this does not add any more challenge; however, oper-
ationally it does. For example, transaction boundaries and throughput planning
become essential in such a combination. However, this is not discussed here as
the focus is only on the functional aspects.

2.1.2 Role of Semantics

Industrial and academic computer science dealt with syntax from the very beginning.
In contrast, explicit semantics became a mainstream topic only recently with the
vision of the Semantic Web put forth by Tim Berners-Lee and the W3C,? followed
up by key researchers in Europe, the USA, and Asia, today making inroads into the
software vendor scene. It is therefore important to look at the role that semantics
plays in context of Web applications in more detail.

There are two main areas (amongst others) where semantics plays a key role.
One is the semantics of data structures and the other is the semantics of behav-
ior. Other areas, which are not discussed further here, are the semantics of iden-
tity of communication and software systems, semantics of transaction models and
their combination, semantics of error handling, and so forth. In principle, whenever
two software systems communicate, all aspects involved in the communication are
potentially semantically mismatching and becoming an area of semantic discrepancy.

Data Semantics

Data semantics deals with the description of data structures and data vocabulary
that allows ideally perfect semantic understanding between two or more software
systems that exchange data. Data semantics for a single software system is called
data model here as no agreement is needed by several software systems in order to
establish it. When several software systems exchange data between each other then
they need to agree on the structure as well as the content at run time. “Agreement”’
in this case might mean a true agreement after negotiation or a true agreement by
the (organizational) power of the stronger. It is unlikely that a single user would be
successful negotiating data structures and content with Amazon.>

e Structure. The basic foundation for data is syntax. In order to support seman-
tics, the syntax needs to be described and defined too, so that the communicating
software systems can parse each other’s data when they are transmitted. A pop-
ular technology is XML that is currently favored by many, despite its problems
regarding verbosity and processing constraints. In the semantic community RDF
is favored currently. However, as in all aspects of collaboration and communica-
tion, the communicating software systems can agree on different types of syntax

2 See http://www.w3c.org
3 See http://www.amazon.com



32 2 Semantic Web Services

as long as the software systems involved interpret the syntax in the exact same
way. As a concrete example, an address can have several syntactic elements like
city and street, both of elementary data type string. A real estate Web site could
have a slightly different notion of address that includes a price as data type float
indicating the price the seller of the property states as the purchase price.

e Vocabulary. The vocabulary describes the possible content of the data structure.
For example, the city element of an address might be a constraint to only existing
cities in the USA. In the real estate example, the price might be a constraint to be
positive and within 10% range of comparable properties. The constraint on the
content of the data elements at run time helps to gain semantic understanding as
the communicating software systems also have to agree on the content, not just
on the structure. In the address example, this forces both communicating software
systems to agree on the same list of eligible cities, preventing a city being named
that one of the software systems has never heard of.

In a human Web scenario it is more and more the case that a human user accesses
several pages when dealing with data, for lookup or even input. The goal is that
the necessary integration of pages, i.e., a human user going from one page to the
next, is a seamless experience. This not only includes the same look and feel, but
also the same data structures and the same vocabulary. As a consequence, the human
user does not realize or recognize that Web pages might be coming from different
providers. A current effort to structure this space is with mash-ups.* Mash-ups are an
example where the data content from different Web pages (and also Web Services)
is integrated and the data from all sources is displayed in homogenous (set of) Web
pages to a human user. A widely used mash-up is a real estate site called Trulia®
where real estate offerings are mashed with Google® maps.

Semantics is an essential foundation in order to make this approach work. In an
ideal world there would not be an integration problem as all data would be stored in
one single homogeneous database, updated in real time as well as accessible in real
time. This would ensure that all Web pages involved have the same underlying data
source and are homogeneous by construction. However, this situation can almost be
considered a corner case as in the majority of situations data is coming from differ-
ent sources. This immediately poses the problem that data structures as well as data
vocabulary are not homogenous at all, but differ from each other, sometimes signif-
icantly. For example, one source might use “AV,” the other “Avenue” as vocabulary.
Structurally one source names a field “price,” the other “offer price.”

In order to make the integration work, two specific problems have to be solved.
First, the data structure and vocabulary must be known from each source that is
going to be used for integration. Each Web page or Web site in a mash-up must
have a clear definition of the data structures and vocabulary it uses. This is defined
and represented in an ontology. Once every source exposes its ontology, the user of

* See http://www.programmableweb.com
® See http://www.trulia.com
6 See http://maps.google.com
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the source knows what to expect and what to provide so that the source can stay
semantically correct and consistent.

Second, the data structures and vocabulary of different sources have to be mapped
to each other so that all integrated sources only have to provide the data structures and
vocabulary according to their semantics. Semantic mismatches that require mapping
“AV” to “Avenue” are resolved outside the sources during the act of integration. The
next two bullet points provide a summary:

e Ontology. External representation of the data model by a data source for collab-
oration and interaction purposes

e Mediation. Semantic preserving mapping between ontologies of different
sources

Some additional areas subject to semantics are not specific to the Semantic Web.
These include nonfunctional properties and correctness of processing. These require-
ments are to be addressed in all types of Webs, semantic or nonsemantic or human
Web as well as machine Web. However, behavior semantics is very important and
discussed next.

Behavior Semantics

Behavior semantics assumes that the data semantics problem is already addressed
for the software systems being integrated providing Web pages or machine functions
or both. Instead, behavior semantics focuses on the proper exchange sequence of
messages or data instances between the software systems.

For example, a real estate Web site has several functions for retrieval of real
estate offers. One function looks up real estate for sale by ZIP code and returns a list
of identifiers. A second function returns an offer price for a given identifier. A third
function returns the address for a given identifier. This means that in order to obtain
the address and the offer price for a given property two calls have to be made. A Web
site that integrates this data with a spatial map (a mash-up between real estate data
and map data), however, assumes that there is only one call necessary to obtain the
address and the offer price for a given property. So the mash-up site is prepared to
make one call for a given identifier; however, the real estate Web site expects two
calls to be made. This is an example of a behavioral mismatch as the two software
systems that are to be integrated do not match in terms of the sequence of invocations
and data instances to be exchanged.

The example highlights the situation of an exchange sequence mismatch as the
caller and the callee expose different communication behavior. This and additional
requirements are listed next:

o Exchange sequence mismatch. An exchange sequence mismatch exists when
either the caller or the callee of a Web page or machine function expects or con-
ducts an invocation that the other software system does not plan to execute. It
can be the case that a caller wants to call a function, but the callee does not offer
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the function. Another case is that a callee requires a specific call, but the caller
will not execute the call. A third case is where both previous cases exist at the
same time.

e Data mismatch. It is possible that the data instances passed back and forth be-
tween the software systems are not matching in the sense of a data semantics
mismatch in structure and vocabulary as discussed earlier. In this case the data
mismatch has to be addressed in addition to the exchange sequence mismatch.

e Data granularity mismatch. A specific case in the context of the data mismatch
exists where the caller has all the data necessary for the callee, but the callee
requires the data be sent in a different granularity. For example, a caller is pro-
grammed in such a way that it passes all data in one big data structure, whereas
the caller needs the data in several smaller pieces. This means that between the
caller and the callee the data needs to be restructured to make it of smaller gran-
ularity. The opposite or a mixed case is possible too.

e Conditional exchange sequence. The communicating software systems are only
aware of their interfaces, not of their internal implementation. This is especially
true for conditional behavior. It is possible that a condition inside the caller de-
termines if a specific data instance communication happens or not. The callee,
however, might not be able to know in which situation the condition is true or
false. As a consequence it needs to be able to receive the call (or not) and deal
with both situations equally well.

In summary, data semantics and behavior semantics go hand in hand and both
need to be addressed independently of the human or machine Web (or their combi-
nation). In any combination the goal of the data semantics and the behavior semantics
is to ensure that a homogenous situation exists between the software systems at the
time of communication or integration. Human users expect consistent structure and
vocabularies as well as behavior that do not get them into a deadlock or lifelock
situation. The same is true for machine communication, of course.

The next section will focus on Web Services, currently an approach to address the
implementation of behavior. Web Services do not yet address the behavior semantics
aspect explicitly in their technology. Therefore a subsequent section will discuss
Semantic Web Services.

2.2 Web Services

Web Services are a very prominent area of academic research and industrial devel-
opment currently. Some say that this is finally “it” in terms of a practical distributed
computing infrastructures. Others counter that this is only “one more” in terms of a
technology stack for remote invocation. All agree that there is too much discrepancy
between the promises like ease of use or interoperability and the real state of affairs.
However, whatever the opinions might be, in the following Web Services as a subject
of research and development are rationalized from the viewpoint of semantics. Their
role is discussed as well as some of the challenges that must be addressed.
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2.2.1 What Exactly Are (Web) Services?

While initially Web Services were meant to be a simple object access protocol for
accessing methods on objects locally as well as remotely, the intent has changed sig-
nificantly since then. Currently the common expectation is that Web Services support
the provision of functionality independent of its implementation technology and ex-
ecution location.

The conceptual notion of “object” does not play a role anymore. Instead, the no-
tion of interface took its place. This is visible as conceptual elements of objects like
unique object identification, methods, class and instance variables, inheritance, and
other concepts are not part of the Web service model at all. Web Services provide
the notion of an interface independent of the programming language used to im-
plement this interface. Interfaces consist of operations in the procedural sense with
the possibility that the execution of an operation causes side effects. In this sense
Web Services provide their own formal language for defining interfaces that are then
bound to their implementation.

The same clear abstraction is provided for the transport protocol used to access
the interface of a service. Several different synchronous as well as asynchronous
transport protocols like HTTP or SMTP can be used to execute the remote invocation
of service interfaces and their operations. Web service technology therefore supports
a transport protocol abstraction in addition to the service implementation abstraction.

These two fundamental abstractions, namely, interface from implementation and
communication from transport, are the source of the expectation that Web Services
will support the free composition of business functionality without common assump-
tions or common restrictions across services. This expectation goes as far as being
able to take services from any provider and by composition be able to put together
robust, secure, reliable business functionality.

The expectation to compose higher-level functionality from individual services
requires that the services involved are completely characterized by their interface
without the need to understand their implementation at all, neither their implemen-
tation location nor any details regarding execution infrastructure. This not only in-
cludes reliability properties, security provisions and availability, but first and fore-
most the semantics of the data and vocabulary referenced by the interface as well as
the behavior semantics. Web service technology today is not able to fulfill this ex-
pectation as data structures are defined using XML schemas and behavior semantics
is not defined in Web service interfaces at all.

There are several conceptual interpretations of Web Services that have been dis-
cussed for quite a while and continue being debated. These different interpretations
manifest themselves in various “styles” like REST, XMLRPC, SOAP, and docu-
ment, to name the most important ones. The REST style follows the principles of
URL style communication, the XMLRPC style — as the name says — follows the
remote invocation idea, the SOAP style argues for the transport abstraction and the
document style puts forward the notion of document instead of data objects. Each
style has its pros and cons and which style to use often depends on the particular
problem that requires a solution. However, a different view argues that at the end of
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the day a particular functionality has to be achieved, like looking up the offer prices
of a real estate. As the ultimate functionality is the focus, any style has to be able to
provide it and make the functionality available. Another viewpoint is that the major-
ity of the IT world thinks in terms of remote invocations; hence, the majority of IT
architects and IT engineers will resort to a remote invocation style.

For the purpose of discussing Semantic Web Services in this book a particular
style does not provide a significant advantage over another style; therefore the par-
ticular styles are not at the center of the discussion.

2.2.2 Role of Web Services

The conceptual model, architecture, and implementation technology of Web Services
is a research topic of many academic researchers and at the same time a focus of
many software vendors, especially those offering products in the so-called middle-
ware infrastructure category. The complexity of Web Services warrants this focus
and effort.

From a semantics viewpoint no support is provided by Web Services, however.
In order to support semantics, two main approaches are possible. One approach is
to change and extend the model of Web Services in order to support explicit se-
mantics. Another model is to utilize Web service technology as foundation systems.
This allows making remote invocation of functionality and data transfer happen as
a basic feature and layer semantics support on top of this basic layer. In this sense,
Web Services are a syntactical foundation enabling a layer “on top” for the semantics
support.

The first approach is taken by W3C and some researchers through the effort of
SAWSDL.” This approach augments the syntactic definition of Web Services with
explicit encoding of semantics in the context of a standards organization.

The second approach is taken by several groups in academia, and later in this
book the work achieved as well as future research plans will be reported in detail.

Until Semantic Web Services become mainstream, the correct semantics has to
be achieved manually by developers through careful service definition, making sure
that Web Services interoperate properly in the sense of data and behavior semantics.
It is the developers’ decision which Web service is being used and which is com-
posed of more complex ones. The success of semantically correct interoperability
depends on the developers’ knowledge. A developer needs to know the meaning of
data structures, vocabulary, and behavior. In addition, unless a developer is aware of
existing services, reuse and composition will not happen. As a consequence it is quite
possible that Web Services are developed with a lot of effort because existing ones
are not known or or because they cannot be discovered easily. As a consequence, the
Web service infrastructure cannot “complain” about mismatching semantics or point
out the existence of a service.

7 See http://www.w3.0rg/2002/ws/sawsdl/
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2.2.3 Challenges

The Web Services model and technology are in a state of flux and the expectations are
that both will keep changing for quite a while. However, there are several challenges
in the context of semantics that are briefly discussed next:

e Semantics. The biggest challenge is addressing the missing encoding of seman-
tics. The Web Services’ model and technology do not have provisions for explic-
itly encoding data and behavior semantics in interfaces or protocols. Very initial
efforts exist by W3C and other standards organizations like OASIS’ Semantic
Execution Environment;® however, they are very initial and are not yet main-
stream.

e Technology. Communication is a very complex area. Interfaces of callees that
are accessed by callers are only a very tiny aspect that requires resolution. Big-
ger requirements are persistence and transactionality, error recovery, service level
agreement supervision, as well as many other areas. All these areas are “under
work” and many standards to address all of these are under development. Cur-
rently this is leading to a complex set of standards that needs to fit into an overall
picture. The same is true for the underlying execution technology.

e Model complexity. In historical terms using Web Services for reliable business
operations is still too complex and requires too much understanding of all as-
pects. The complexity of the model of communication visible to the user of this
technology is too high and it must be a goal to reduce the visible complexity with
the idea to deal with it in the infrastructure technology.

In the context of this book, the complexity and technology challenges play only a
peripheral role. The main focus lies on the semantics challenge and will be addressed
by Semantic Web Services. Semantic Web Services focus on the semantics aspect of
the data semantics and behavior semantics in fundamental terms. In addition, other
important areas like service discovery based on semantic descriptions are introduced.

2.3 Semantic Web Services: The Future of Integration!

Integration of services cannot be machine-supported or automated without the ex-
plicit representation of the relevant data and behavior semantics as introduced earlier.
The goal of Semantic Web Services is exactly that: to provide a conceptual model
as well as languages to describe Semantic Web Services. Example implementations
of Semantic Web Services exist in, for example, the effort called Web service Exe-
cution Environment (WSMX). The fundamental concept of Semantic Web Services
was first introduced in an article by Fensel and Bussler [75]. In the meanwhile, many
concrete projects resulted in research prototypes as well as formal languages that
will be introduced later in this book in a lot more detail.

8 See http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=semantic-ex
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2.3.1 (Semantic Web) Services Versus Semantic (Web Services)

When putting forward a conceptual model of Semantic Web Services a fundamental
paradigm decision has to be made in the context of the various “Webs” that exist.
There is the current “syntactic” Web and there will be the future “Semantic” Web.
While one is in existence today, researchers worldwide are working on the Semantic
Web and as soon as business models and the viral effect are worked out it can be
expected that the Semantic Web will happen on the same large scale as the current
Web and eventually replace it while becoming a lot larger. This does not mean at all
that there will be two competing Webs, this development will ensure that the current
Web transforms over time into a Semantic Web.

Both Webs in their fundamental structure provide access to data, static data as
well as dynamic data. Both Webs will ensure that human as well as machine access
is easy to achieve. Semantic Web Services add the dynamic access to functionality
to the data dimension. Since there are two Webs, which one will be the basis for
Semantic Web Services? So, will it be that the service model is added to the Semantic
Web as in “(Semantic Web) Services”? Or will it be current Web Services augmented
with semantics as in “Semantic (Web Services)”?

From a pragmatic viewpoint it is necessary to support the current predominant
Web and Web Services. It is possible to not only include services that are already
encoded in a Semantic Web Services language, but also those that already exist and
might not have semantics annotation at all. As the underlying Web transforms from
the syntactic Web to the Semantic Web, Semantic Web Services should not require to
be redone but should be independent of that transformation. Instead, the transition of
the Web should be as seamless as possible and Semantic Web Services must be able
to support any combination of services in any Web. Therefore, efforts are being made
to connect to both worlds equally well in the context of Semantic Web Services.

2.3.2 Advantages of Semantic Web Services

The advantages of Semantic Web Services — as the name indicates — stem from the
fact that semantics is encoded explicitly and formally in the service description and
that the execution environment for Semantic Web Services is able to interpret and
use the semantics appropriately. This supports direct understanding at design time as
well as run time.

If data semantics is encoded properly, a data type mismatch regarding the
Japanese Emperor date would be detected at design time and no run-time error will
occur because of a data mismatch. A proper design-time environment would detect
that, for example, a caller is passing on dates including Japanese Emperor dates. The
year 2007 is the 19th year of the current Japanese Emperor and therefore 19 is a valid
value for the year in Japan. Japan Railroads uses the Emperor date as one of many
companies. The design time would also detect that the called service is not able to
use Emperor dates and would not be able to process those, causing run-time errors.
Therefore, this mismatch would be detected and immediately the designer would be
notified about it. The designer can at this point decide not to use the service or to
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insert proper data mediation. This is significant as in both cases the year in the data
structure could be encoded as a data type integer, meaning that the semantics cannot
be seen by examining the data structure alone.

In the context of a larger scope it is possible to use the explicit semantic descrip-
tion to search for appropriate services. For example, if complex business logic like
a multicity travel schedule planner requires various services for individual elements
like hotels, transfers, flights, ships, and so on, then those can be searched for on the
basis of their semantic description. Only those would be detected that can, for exam-
ple, accept credit card payments that allow a reservation period of 24 hours before
booking is necessary, and so on. In these composition scenarios, where business logic
is composed of services, the semantic precision is the basis for proper discovery and
selection.

In process-oriented integration scenarios the behavior semantics becomes very
important. If a service requires multiple interactions for it to function properly, the
behavior semantics encodes this properly. Any caller can then determine if it can pro-
vide the multiple interactions or not. For example, a service that allows the purchase
of electronics goods might have several interactions, including placing the order,
confirming the order, and notification that the order has been shipped. Any user of
this service must be able to send or receive these three interaction points. If not,
the communication will fail, rendering the integration useless. A proper design-time
environment understands the calling as well as the invoked service and their behav-
ior semantics, being able to determine if the communication will match or not in
all possible execution cases. Only then the run-time behavior will succeed without
errors.

2.3.3 Functionality

The main areas of functionality in context of Semantic Web Services are discussed
next. For each of those a separate chapter follows subsequently in the book.

e Conceptual model. Semantic Web Services introduce a set of concepts that are
used to express the intent of the designer, for example, the notion of goal, medi-
ator, and service. These concepts have to be argued for, their relationship has to
be discussed as well as their meaning.

e Modeling language. While a conceptual model defines and clarifies the concepts
of Semantic Web Services, for all practical and pragmatic reasons it is necessary
to have a formal language that allows one to define a specific situation or appli-
cation. For example, the goal of planning a vacation trip or the goal of investing
some money needs to be defined and therefore written down formally. A formal
language is therefore necessary as an important aspect of Semantic Web Services.

e Reasoning. In order to support deductive abilities during execution of Semantic
Web Services it is necessary to apply reasoning. This ensures that at execution
time derivations can be achieved that do not have to be explicitly defined by a
human user, but can be derived from known facts or already achieved deductions.
Reasoning is therefore an important aspect of Semantic Web Services.
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e Discovery. As discussed before, often it is not possible or not desirable for
developers or designers to know all the necessary services required for a success-
ful execution of Semantic Web Services. It would be a lot more powerful if the
execution environment could detect appropriate services automatically through a
mechanism called discovery.

e Selection. Once discovery has happened it might be the case that several equally
suited services are discovered. However, at run time only one is needed to exe-
cute a particular invocation. Hence, a selection process has to happen that allows
selection of the most appropriate service for a given situation.

e Mediation. The above discussion introduced the need for data and process medi-
ation. Both are essential for a Semantic Web Services system to support service
execution.

e Architecture. In the end, a software system must be built that implements
Semantic Web Services so that services can be defined, composed, discovered,
selected, and used in all actuality for specific use. An architecture must therefore
provide all necessary functionality in various architecture components. Further-
more, an architecture has to ensure proper execution that requires an appropriate
execution semantics that matches precisely with the conceptual model.

All the various concepts discussed so far and all the functionality listed will be
discussed in separate chapters throughout the remainder of the book in a lot more
detail and in the context of very concrete research and industry work. However, it is
easy to lose sight of the ultimate goal as a guiding principle and therefore the grand
vision of Semantic Web Services is explicitly outlined next as a description of the
ideal world.

2.4 The Ideal World

What would the ideal world look like? As a vision it is often helpful to spend some
thoughts on it in order to not lose sight of the final destination.

In the context of Semantic Web Services as a basis, all services would be per-
fectly described regarding their semantics. All data and behavior would be com-
pletely defined so that complete understanding of the services is possible related to
their use (invocation). The nonfunctional properties of services would be defined oo,
like their service level promises, their persistent and transactional behavior, and so
on. In short, all necessary aspects, functional and operational, are properly encoded
and accessible for any design-time and run-time system.

Furthermore, in an ideal world it is possible to discover services on the basis
of their semantics description. It would be guaranteed that if a service with spe-
cific properties exists, it would be discovered. No service would go undetected that
possesses the desired characteristics, functional or operational. This is the basis for
dynamic composition at run time where services are searched for and discovered as
needed. It would allow one to do some composition at design time, but also dynami-
cally without human supervision at run time.
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The ultimate state, however, would be if the proper composition of services to
achieve a specific functionality would become invisible and would be left to the
operating infrastructure. Instead, it would be great to only state a goal and on the
basis of the goal the proper services are discovered and executed properly. During
discovery and execution it might be necessary to obtain more data from the user who
set the goal, but this would also be a declarative interaction. This approach would
ultimately move services from a procedural design task of explicit composition to
a declarative task of stating goals (without worrying about the specific composition
details).

An example of this vision would be the goal to visit the International Snow Fes-
tival in Sapporo, Japan.® For clarification the system would need to know the year
the visit should take place. The system can figure out the festival duration (usually
1 week) and it would need confirmation of these dates from the user so that the user
can indicate extensions or alternative durations. Once the basic data has been ob-
tained the system would put together a schedule with airport transfer, flights, train in
Japan, hotel, as well as cultural activities. At this point the user could refine the trip
proposal, selecting specific airlines, flight times, and hotel choices. He also could ask
for cultural schedules beyond the Snow Festival itself, maybe including Sapporo or
even the whole of Hokkaido. The system would then ensure that all data is available
and matches with the schedule, possibly suggesting alternative or extended travel
dates.

As this small example shows, the user would only be concerned about the details
of his goals. The underlying mechanics of searching schedules, availability, discov-
ery of currency exchange services, and so on are completely hidden from the user.

2.5 Summary

Semantic Web Services are a very powerful paradigm to transform the current syntac-
tic Web into a dynamic, semantic and goal-oriented system that exposes goal orien-
tation as the main mechanism of achieving functionality. This requires a tremendous
effort from academia as well as industry to provide all the mechanisms needed to
accomplish this. These include semantic descriptions of data and services, dynamic
discovery and composition, goal resolution, and goal decomposition, all supported
by underlying base functionality like reasoning. This book introduces the main re-
search efforts in context of the Web Service Modeling Ontology (WSMO), Web Ser-
vice Modeling Language (WSML) as well as Web Service Execution Environment
(WSMX).

9 See http://www.snowfes.com/english/
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WSMO and WSML

As introduced in the previous chapter Semantic Web Services offer a mechanism
for enabling dynamic integration of services by providing explicit descriptions of
the function of services, the data they describe, and the mechanisms to interact with
them. In order for Semantic Web Services to be successful it is necessary to define a
conceptual model that contains all those elements needed to successfully describe
Semantic Web Services and on the basis of this conceptual model to provide a
modeling language through which Semantic Web Services can be actually described.
Within the context of the book the Web Service Modeling Ontology (WSMO) and
its formalism the Web Service Modeling Language (WSML) are used in these two
roles to successfully describe Semantic Web Services. This chapter provides an in-
troduction to these two technologies, providing the reader with the key foundational
knowledge needed for the rest of the book, as well as a reference source that the
reader can browse when needed.

3.1 The Web Service Modeling Ontology

In order to totally or partially automate the process of integrating many services into
a Service-Oriented Architecture it is necessary to semantically describe all aspects
related to services that are available through a Web service interface. The WSMO
[77] provides a conceptual model for creating such descriptions of services. WSMO
has its conceptual basis in the Web Service Modeling Framework (WSMF) [75],
which it extends and refines to provide an ontological specification of the core ele-
ments of Semantic Web Services. WSMO brings together the ongoing work in the
fields of the Semantic Web and Web Services and thus must also bring together the
design principles of the Web, the Semantic Web, and distributed service-oriented
computing. The design principles of WSMO are as follows:

e Services vs Web Services: A Web service is a computational entity that is able to
provide some functionality to the user by invoking it. A service, in contrast, is
the actual value provided by the invocation. WSMO is designed as a means to
describe Web Services and not to replace services.
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Description vs implementation: WSMO makes a firm distinction between the
description of elements of Semantic Web Services and executable technologies.
WSMO aims at providing an ontological description model for the former and to
be compliant with the latter.

Ontology-based: Ontologies are the core of the WSMO metamodel, allow-
ing for enhanced information processing and automatic resolution of hetero-
geneity issues between resources. Ontologies are the data model throughout
WSMO, such that all resource descriptions and data exchanged are ontologically
described.

Ontological role separation: The contexts within which requesters and providers
of service functionality exist can be very different from one another. Thus, it
is important that WSMO differentiates between the requirements that a given
requester has and the functionality that service providers are willing to offer. This
differentiation gives rise to two top-level elements of the WSMO metamodel,
namely goals and Web Services.

Strict decoupling: The Web is an open and distributed place, where resources are
developed in isolation from one another. WSMO embraces this fact and states
that resources should be strictly decoupled from one another. This means seman-
tic descriptions are developed in isolation from one another without regard for
their possible usage or interaction with other resources.

Centrality of mediation: As resources are strictly decoupled from one another,
there must exist some mechanism for resolving heterogeneity issues between re-
sources. Mediation performs the role of resolving potential mismatches between
resources that can occur at the data, protocol, or process levels. Mediation is a
core concept of the WSMO metamodel and as such mediators are a top-level
element of the WSMO metamodel.

Web compliance: WSMO inherits the concept of Universal Resource Identifier
(URI) from the Web as the mechanism for unique identification of resources.
Providing this design principle within WSMO means that languages that for-
malize WSMO should use URIs for resource identification in order to be Web-
compliant.

Execution semantics: The formal execution semantics of reference implementa-
tions of WSMO, like the Web Service Execution Environment (WSMX) [95],
provide a mechanism to verify the WSMO specification.

On the basis of these design principles the WSMO metamodel has four top-level

elements, which can be seen in Fig. 3.1, namely, Ontologies, Web Services, Goals,
and Mediators. To effectively describe Semantic Web Services we need to understand
each of these four elements. WSMO makes use of the Meta-Object Facility (MOF)
[160] specification to define its metamodel. The MOF provides a language and
framework for specifying technology neutral metamodels. The benefit of using the
MOF is that the model and the languages that are ultimately used to describe Seman-
tic Web Services are separated from one another. This separation gives significantly
more freedom than with competing approaches like OWL-S, which is described in
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Goals

Ontologies Web Services

Mediators

Figure 3.1. Web service Modeling Ontology top-level elements

more detail in Chap. 13. In the following sections we use the MOF specification
to describe the four top-level elements of the WSMO metamodel and their child
elements.

3.1.1 WSMO Ontologies

Ontologies in WSMO provide the terminology used across all other descriptions and
are crucial to the success of Semantic Web Services, as they provide the means by
which enhanced information processing becomes possible and complex interoper-
ability problems can be solved. WSMO is an epistemological model in that it is gen-
eral enough to intuitively capture existing languages used for describing ontologies.
In Listing 3.1 a WSMO ontology is described using the MOF notation.

Listing 3.1. Ontology definition

Class ontology
hasNonFunctionalProperty type nonFunctionalProperty
importsOntology type ontology
usesMediator type ooMediator
hasConcept type concept
hasRelation type relation
hasFunction type function
haslnstance type instance
hasRelationInstance type relationinstance
hasAxiom type axiom

Nonfunctional Properties

It is possible to add nonfunctional properties onto all WSMO elements. Nonfunc-
tional properties are mainly used to describe nonfunctional aspects of a description,
such as the creator and creation date, and to provide natural-language descriptions,
etc. The elements defined by the Dublin Core Metadata Initiative [216] are taken as
a starting point. Dublin Core is a set of attributes that define a standard for cross-
domain information resource description. WSMO uses URIs for identification of
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elements and this is also true with respect to nonfunctional properties, which are
specified as key value pairs, where the key is a URI identifying the property and the
value is another element.

Imported Ontologies

The process of building an ontology to describe a given domain can be a complex
and costly process. To reduce this complexity and cost, WSMO is designed to be
modular such that a given ontology can be reused when building another ontology.
This means when modeling a given domain, useful ontologies that contain concepts
that are pertinent to this domain can be imported from existing ontologies. When
an ontology is imported, all the statements from that imported ontology are added
to this ontology. All top-level elements within the WSMO metamodel may use the
importsOntololgy statement to import ontologies that contain the relevant concepts
needed to build a description, for example, a WSMO Web service description will
import those WSMO ontologies that contain concepts needed to describe the service
in question.

Mediators for Importing Ontologies

Of course it may not always be possible to directly import a given ontology as mis-
matches between statements in the importing and imported ontology or between any
two given imported ontologies may exist. In this case a mediator is required, such
that the ontology is imported via this mediator. This mediator has the job of align-
ing, merging, or transforming the imported ontology so as to resolve any existing
heterogeneity issues that may arise by importation. Like the importsOntology state-
ment, the usesMediator statement may be used on all top-level elements within the
WSMO metamodel.

Concepts

Concepts represent the basic agreed upon terminology for a given domain. From
a high-level point of view a concept is made up of a set of attributes, where each
attribute has a name and a type. Using the MOF notation, a concept is as shown in
Listing 3.2.

Listing 3.2. Concept definition

Class concept
hasNonFunctionalProperties type nonFunctionalProperties
hasSuperConcept type concept
hasAttribute type attribute
hasDefinition type logicalExpression multiplicity = single—valued

Class attribute
hasNonFunctionalProperties type nonFunctionalProperties
hasRange type concept multiplicity = single—valued
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A concept can also be a subconcept of one or more direct superconcepts using the
hasSuperConcept statement. This statement allows the “is-a” relationship between
concepts o be specified. One of the most important aspects of this relationship is
that a subconcept inherits the signatures of all its superconcepts, for example, all
attributes defined for a given concept will also be defined for any of its subconcepts.

Using the hasAttribute statement, one can specify a set of attributes on the con-
cept. The MOF definition of an attribute is also specified in Listing 3.2. The range
of an attribute can be constrained to a given concept, such that all instances of the
concept that specify a value for this attribute must conform to this range restriction.

Furthermore a concept can be further refined by specifying a logical expression
through the hasDefinition statement. This logical expression can be used to express
additional constraints on the concept or relationships than cannot be captured through
the hasAttribute or the hasSuperConcept statement.

Relations and Functions

When defining an ontology there is more to be done than just defining the terminol-
ogy of the domain. Many relationships will exist between the defined terminology
and in order to capture these relationships a WSMO relation can be used. The arity
of a relation is not restricted; thus, a relation is able to model dependencies between
two or more concepts. The MOF definition of a relation is presented in Listing 3.3.

Listing 3.3. Relation definition

Class relation
hasNonFunctionalProperties type nonFunctionalProperties
hasSuperRelation type relation
hasParameter type parameter
hasDefinition type logicalExpression multiplicity = single—valued

Class parameter
hasNonFunctionalProperties type nonFunctionalProperties
hasDomain type concept multiplicity = single—valued

Each relation can have zero or more superrelations. Being the subrelation of
another relation means that the subrelation inherits the signature of the superrela-
tion along with any associated constraints. Similarly to attributes for concepts, a
relation can define a set of parameters, which may be a named set or an ordered
unnamed set. It is possible to define the domain of each of the parameters, where
this domain specifies the allowed values that can be placed in this slot of the relation
when it is instantiated. WSMO ontologies can also have functions, specified with the
hasFunction statement. Functions, as described in Listing 3.4, are special relations
with a unary range, specified along with the parameters (the domain). Functions can

Listing 3.4. Function definition

Class function sub—Class relation
hasRange type concept multiplicity = single—valued
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be used to represent built in predicates of common data types. The semantics of a
relation or function can be captured within a logical expression specified with the
hasDefinition statement.

Instances of Concepts and Relations

As can be seen in Listing 3.5, it is possible to instantiate both concepts and rela-
tions defined within a WSMO ontology. When instantiating a concept or a relation,
values are assigned to the attributes or parameters of the concept or relation being
instantiated, where the type of the value being assigned conforms to the range of the
attribute or the domain of the parameter. Instances may be defined explicitly within
the ontology; however, in general a link to an external store of instances will be given
when a large number of instances exist.

Listing 3.5. Instance definitions

Class instance
hasNonFunctionalProperties type nonFunctionalProperties
hasType type concept
hasAttributeValues type attributeValue

Class relationInstance
hasNonFunctionalProperties type nonFunctionalProperties
hasType type relation
hasParameterValue type parameterValue

Axioms

An axiom, as described in Listing 3.6, is a logical expression together with its non-
functional properties. Axioms provide a mechanism for adding arbitrary logical ex-
pressions to an ontology, where these axioms can be used to refine concepts, relation,
or function definitions in the ontology, to add arbitrary axiomatic domain knowledge,
or to express constraints.

Listing 3.6. Axiom definition

Class axiom sub—Class wsmoElement
hasDefinition type logicalExpression

3.1.2 WSMO Web Services

Web Services are computational entities that provide some functionality that has an
associated value in a given domain. A WSMO Web service is a formal description of
the Web Service’s functionality, in terms of a capability, and the method to interact
with it, in terms of an interface. A formal description of a WSMO Web service using
the MOF notation is given in Listing 3.7.
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Listing 3.7. Web service definition

Class service
hasNonFunctionalProperty type nonFunctionalProperty
importsOntology type ontology
usesMediator type {ooMediator, wwMediator }
hasCapability type capability multiplicity = single—valued
hasinterface type interface

Those ontologies that are required in order to define the service can be imported
via the importsOntology or usesMediator statements. The usesMediator statement
may also be used with a Web service to Web service mediator (wwMediator), in
cases where process or protocol heterogeneity issues need to be resolved.

Nonfunctional Properties for Web Services

A service, like all other WSMO elements, can specify a set of nonfunctional proper-
ties. The nonfunctional properties of a service, besides those already presented, can
include extra information about aspects of the service that are not directly related to
the function of the service, for example, the reliability, performance, or scalability of
the service.

Capabilities

The capability of the service describes the real value of the service and is described
in MOF as shown in Listing 3.8.

Listing 3.8. Capability definition

Class capability
hasNonFunctionalProperty type nonFunctionalProperty
importsOntology type ontology
usesMediator type ooMediator
hasPrecondition type axiom
hasAssumption type axiom
hasPostcondition type axiom
hasEffect type axiom

The capability of a service is made up of a set of axioms that describe the state
of the world before the execution occurs and the state of the world afterwards. Us-
ing the hasPrecondition and hasPostcondition statements, one can make axiomatic
statements about the expected inputs and outputs of the service, i.e., what informa-
tion must be available for the service to be executed and what information will be
available after the service has been executed. The hasAssumption and hasEffect state-
ments can be used to state the assumed state of the world prior to execution and the
guaranteed state of the world afterwards. The capability of a service can be used by a
requester for discovery purposes, i.e., to determine if the functionality of the service
meets the requester’s functional needs.
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Interfaces

While the capability of a service describes the function of a service, the interface
describes how this function can be a achieved and is described in MOF as shown in
Listing 3.9.

Listing 3.9. Interface definition

Class interface
hasNonFunctionalProperty type nonFunctionalProperty
importsOntology type ontology
usesMediator type ooMediator
hasChoreography type choreography
hasOrchestration type orchestration

The interface of a service provides a dual view of the operational competence
of the service. With use of the hasChoreography statement, a decomposition of the
capability in terms of interaction with the service is provided, while with use of the
hasOrchestration statement the capability can be decomposed in terms of the func-
tionality required from other services in order to realize this service. The distinction
between these two descriptions is the difference between communication and coop-
eration. The choreography provides a description of how to interact with a service,
while the orchestration describes how the overall function of the service is realized
through cooperation with other services. The interface of a service is presented in a
machine-processable manner, allowing for software to determine the behavior of the
service and to reason about it.

Both choreography and orchestration are defined using the same formalism,
based on abstract state machines [93] (although the orchestration is still underde-
fined). The choreography of a service is defined in MOF as shown in Listing 3.10.

Listing 3.10. Choreography definition

Class choreography
hasNonFunctionalProperties type nonFunctionalProperties
hasStateSignature type stateSignature
hasState type state
hasTransitionRules type transitionRules

The most important parts of the definition are the state signature and the transition
rules. The state signature defines the state ontology used by the service together with
the definition of the types of modes the concepts and relations may have — which
describes the service’s and the requester’s rights over the instances. The transition
rules express changes of states by changing the set of instances [186].

Applying different transition rules, the choreography evolves from the initial
state (which technically is the same as the state signature, if not otherwise speci-
fied) to the final state, going through several intermediate states; in the final state no
further updates based on the transition rules can be applied.
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The orchestration is envisioned to have a similar definition as the choreography,
with the main difference being that the choreography considers two participants in a
conversation, while the orchestration is a description of the cooperation of multiple
participants.

3.1.3 WSMO Goals

Goals describe aspects related to the requirements of the end user. WSMO com-
pletely decouples the requester’s desires from the Web Services that ultimately fulfill
the desired functionality. With the MOF notation a WSMO goal is defined as shown
in Listing 3.11.

Listing 3.11. Goal definition

Class goal
hasNonFunctionalProperty type nonFunctionalProperty
importsOntology type ontology
usesMediator type {ooMediator, ggMediator }
requestsCapability type capability multiplicity = single—valued
requestsinterface type interface

A WSMO goal can be seen as a description of services that would potentially
satisfy the requester’s desires. All of the elements that make up a goal have been
previously described in this chapter. Specifically the capability of the goal can be
seen in Listing 3.8 and the interface of the goal in Listing 3.9.

3.1.4 WSMO Mediators

Mediators describe elements that resolve interoperability problems between different
elements, e.g., between two ontologies or two services. Mediators are a core element
of WSMO and aim to resolve heterogeneity problems at the data, process, and proto-
col levels. The definition of a mediator using the MOF notation is as shown in Listing
3.12.

Listing 3.12. Mediator definition

Class mediator
hasNonFunctionalProperty type nonFunctionalProperty
importsOntology type ontology
hasSource type {ontology, goal, Webservice, mediator }
hasTarget type {ontology, goal, Webservice, mediator}
hasMediationService type {Webservice, goal, wwMediator }

Like all WSMO eclements a mediator can define a set of nonfunctional prop-
erties using the hasNonFunctionalProperty statement. Furthermore, the terminol-
ogy needed from other ontologies to define this mediator can be imported using
the importsOntology statement. The source component of a mediator defines the
resources for which the heterogeneities are resolved, while the target component
defines the resources that receive these mediated source components. A mediation
service can be used to define the facility applied for performing the mediation using
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the hasMediationService statement. This service may explicitly link to a Web service
description or may link to a goal describing the functionality needed, which can then
be resolved to a Web service at run time using service discovery. There are four types
of mediator within the WSMO metamodel:

1. Ontology to ontology mediators. Ontology to ontology mediators (ooMediators),
as defined in Listing 3.13, provide a mechanism by which mismatches between
two or more ontologies can be resolved. The source component of an ooMediator
is an ontology or another ooMediator, and the source defines the resources for
which mismatches will be resolved by the mediator. The target of an ooMediator
can be an ontology, goal, Web service, or a mediator, and the target defines the
target component which will receive the results of mediating the sources.

Listing 3.13. ooMediator definition

Class ooMediator sub—Class mediator
hasSource type {ontology, ooMediator}

As described in Sect. 3.1.1, ooMediators are used across all WSMO top-level
elements within the usesMediator statement in order to import terminology re-
quired by a resource description whenever there are mismatches between the
ontologies to be used.

2. Goal to goal mediators. Goal to goal mediators (ggMediators), as defined in
Listing 3.14, connect goals to one another and allow for relationships between
different goals to be specified. A ggMediator can be used to specify that one goal
is equivalent to another goal, or that the source goal is a refinement of the target.

Listing 3.14. ggMediator definition

Class ggMediator sub—Class mediator
usesMediator type ooMediator
hasSource type {goal, ggMediator}
hasTarget type {goal, ggMediator}

The source of a ggMediator can be a goal or another ggMediator, which is also
true for the target of a ggMediator. The ability to specify a ggMediator as source
or target allows for mediators to be gained together.

3. Web service to goal mediators. Web service to goal mediators (wgMediators),
defined in Listing 3.15, which could also be described as goal to Web service
mediators, provide a mechanism for expressing relationships between Web Ser-
vices and goals. Primarily wgMediators are used to prelink services to goals or
to cache the results of previously performed discovery actions. For example, a
wgMediator may be used to express that a given goal can be totally or partially
fulfilled by a given Web service.

Listing 3.15. wgMediator definition

Class wgMediator sub—Class mediator
usesMediator type ooMediator
hasSource type {Webservice, goal, wgMediator, ggMediator }
hasTarget type {Webservice, goal, ggMediator, wgMediator}
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4. Web service to Web service mediators. Web service to Web service mediators
(wwMediators), defined in Listing 3.16, provide a mechanism for expressing
relationships between Web Services. These relationships could include stating
that two Web Services provide equivalent functionality, a group of Web Services
provide equivalent functionality to one Web service, or that one Web service is
arefinement of another.

Listing 3.16. wwMediator definition

Class wwMediator sub—Class mediator
usesMediator type ooMediator
hasSource type {Webservice, wwMediator }
hasTarget type {Webservice, wwMediator }

wwMediators can also be used to establish interoperability between Web Ser-
vices in cases where they would otherwise be not interoperable, i.e., a wwMedi-
ator could be used to specify a mediation between the choreography of two Web
Services, where mediation can involve the data, protocol, or process levels.

3.2 The Web Service Modeling Language

The Web service Modeling Language (WSML) [53] is a concrete formal language
based on the conceptual model of WSMO [77], described in the previous section. As
such, it provides a means for describing ontologies, goals, Web Services, and medi-
ators in the way envisioned by WSMO. Besides providing a concrete language for
WSMO, WSML presents a framework of different language variants, incorporating
both description logics and logic programming, the latter extended with F-logic-
based [121] metamodeling. Thereby, WSML aims to investigate the application and
integration of description logics and logic programming for the Semantic Web and
Semantic Web Services.

We see three main areas which benefit from the use of formal methods in Web
service description: (1) ontology description, (2) declarative functional description
of goals and Web Services, and (3) description of Web service dynamics, where the
functional description corresponds to the Web service capability, and the dynamic
description corresponds to the chorcography and orchestration. WSML. defines a
syntax and semantics for ontology descriptions. The underlying formalisms which
were mentioned earlier are used to give a formal meaning to ontology descriptions
in WSML. For the functional description of goals and Web Services, WSML offers
a syntactical framework, with Hoare-style semantics in mind. WSML does not com-
mit one to a specific semantics of the functional descriptions of services; there are
several proposals for such semantics, e.g., set-based [115, 138] and state-based [116]
descriptions, where the latter are more expressive, but also more complex to write.
The description of the dynamic behavior of Web Services (choreography and orches-
tration) in the context of WSML is currently under investigation, but has not been
integrated in WSML at this point.
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This section is further structured as follows. We present the design principles of
WSML in Sect. 3.2.1. We proceed with a description of the WSML variants and their
(intended) interrelationship in Sect. 3.2.2. We then introduce the WSML through its
surface syntax in Sect. 3.2.3, and conclude with a description of possible ways of
exchanging WSML using (Semantic) Web languages in Sect. 3.2.4.

3.2.1 Design Principles of WSML

In the first place, WSML is a concrete language for WSMO [77]. The main goal
of WSML is to provide a syntax and semantics for WSMO. The design of WSML
further follows three main principles:

1. A language based on two useful well-known formalisms. We conjecture that

both description logics and logic programming are useful formal language
paradigms for ontology description, and knowledge representation on the
Semantic Web [120], and, consequently, for Semantic Web Services. The for-
mal properties, as well as reasoning algorithms, for both paradigms have been
thoroughly investigated in the respective research communities, and efficient
reasoning implementations are available for both paradigms. WSML should
leverage the research which has been done in both areas, and the implementa-
tions which are available, by catering for both language paradigms.
The difference in the expressiveness and underlying assumptions of both para-
digms should be overcome by defining means for interaction between descrip-
tions in both paradigms. On the one hand, it is desirable to use a common subset
of both paradigms for such interaction [88] so that it is not necessary to com-
promise on the computational properties and so that existing implementations
for both paradigms can still be used. On the other hand, using a common subset
requires compromising on expressiveness, which is not desirable in many situa-
tions; a common superset would include the expressiveness of both paradigms,
but would require compromising on computational properties such as decidabil-
ity [137].

2. Web language. WSML is meant to be a language for the Semantic Web; there-
fore, WSML needs to take into account and adopt the relevant (semantic) Web
standards. We proceed to describe the Web standards which are relevant for
WSML.

The Web has a number of standards for object identification and the represen-
tation and manipulation of data which can be directly adopted by any Web
language, including WSML. The Web architecture [110] prescribes the use of
the standard URI [21], and its successor Internationalized Resource Identifier
(IRI) [63], for the identification of objects on the Web. Therefore, such things
as concepts, instances, relations, and axioms need to be identified using URIs.
XML Schema [23] describes a number of data types (e.g. a string, integer, date);
XQuery [142] describes a number of datatype functions and operators for ma-
nipulating and comparing data conforming to these types.

A number of languages have been standardized for the exchange of information
over the Semantic Web. The most basic of these languages is XML [28], which
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provides a structured format for exchange of data over the Web. In fact, XML
is part of the foundation for the Semantic Web; XML is used, for example, for
transmitting RDF data over the Web [15]. RDF [127] is the standard language
for exchanging (semi-)structured data over the Semantic Web. RDF Schema [29]
provides a lightweight ontology language for RDF which allows one to ex-
press classes, properties, and domain and range restrictions; furthermore, RDF
Schema allows for metamodeling. OWL [58] is the standard ontology language
for the Semantic Web, partially extending RDF Schema; the sublanguage OWL
DL provides a means for exchanging description-logic-based ontologies over
the Web. There is currently no standard rules language for the Semantic Web;
however, such an effort has been started in the context of the Rule Interchange
Format (RIF) Working Group.! One of the basic design principles for languages
on the Semantic Web is to reuse existing (semantic) Web languages as much
as possible. Therefore, WSML should use the mentioned languages as much as
possible for the exchange of ontology (and Web service) descriptions.

We consider query languages such as SPARQL [179] beyond the scope of
WSML. However, SPARQL may be used to query the RDF representation of
WSML [52].

3. User-friendly surface syntax. It has been argued that tools hide language syntax

from the user, and thus a user-friendly surface syntax is not necessary; however,
as has been seen, for example, with the adoption of SQL, an expressive but un-
derstandable syntax is crucial for successful adoption of a language. Developers
and early adopters of the language will have to deal with the concrete syntax
of any new language; therefore, readability and understandability increase adop-
tion of a language. This trend is also visible on the Semantic Web, with the
development of surface syntaxes for RDF (e.g., N-Triples [87]) and OWL [103],
which are easier to read and write for the human user than the standard exchange
syntaxes [15, 58].
Different people may have different assumptions about the meaning of con-
straints [57]; for some, a constraint has an “inferring” meaning, whereas for
others, a constraint has a “checking” meaning. Since WSML incorporates both
paradigms, the surface syntax should make this distinction clear to the user.

A drawback of using a formal logical language is that the syntax of the lan-
guage is often hard to understand and use by nonexpert users. Therefore, WSML
should provide a means for hiding complex logical formulas from nonexpert users
who are mainly interested in the conceptual modeling of ontologies, and not in com-
plex logical axioms.

The following sections describe how these design principles are realized in
WSML. Section 3.2.2 describes the framework of WSML variants, which correspond
to the relevant well-known formalisms of the first design principle. Section 3.2.3
describes the different modeling constructs in WSML using the normative surface
syntax, which is meant to be user-friendly, and in which URIs and XML datatypes

! http://www.w3.0rg/2005/rules/wg
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play an important role; we also mention the mappings to XML, RDF (Schema), and
OWL, enabling the exchange of WSML descriptions over the (semantic) Web using
these languages.

3.2.2 The WSML Layering

Following the principle, detailed in the previous section, of the use of both the de-
scription logics and the logic programming paradigms, WSML incorporates a num-
ber of different language variants, corresponding to the description logics and the
logic programming paradigms, and their possible (subset and superset) interaction.
Figure 3.2(a) shows the WSML variants and their interrelationships. The variants
differ in logical expressiveness and underlying language paradigms; they allow users
to make a trade-off between the expressiveness of a variant and the complexity of
reasoning, for ontology modeling on a per-application basis.

WSML-Core is based on an intersection of the description logic SHZQ and Horn
logic, also known as description logic programs [88]. It has the least expres-
sive power of the WSML variants, and functions as a common subset of the
description-logic-based and logic-programming-based variants.

WSML-DL is the description logic variant of WSML, and captures the description
logic SHZQ(D), which is a major part of (the description logic species of)
OWL [58].

WSML-Flight is the least expressive of the two logic-programming-based variants
of WSML,; it is an extension of WSML-Core towards a powerful rule language.
It adds features such as metamodeling, constraints, and nonmonotonic nega-
tion. WSML-Flight is based on a logic programming variant of F-logic [121]
and is semantically equivalent to Datalog with inequality and (locally) strati-
fied negation. WSML-Flight is a direct syntactic extension of WSML-Core and
it is intended to be a semantic extension in the sense that every WSML-Core
inference is also a WSML-Flight inference. Technical issues related to the lay-
ering between the (description-logic-based) WSML-Core and (F-logic-based)
WSML-Flight are discussed in detail in [51].
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WSML-Rule extends WSML-Flight with further features from logic programming,
namely, the use of function symbols, unsafe rules, and unstratified negation.
There are two prominent semantics for logic programs with unstratified negation,
namely, the stable model semantics [85] and the well-founded semantics [83];
with respect to the task of query answering, the latter can be seen as an ap-
proximation of the former. In version 0.21 of the WSML specification [53], the
semantics of WSML-Rule was based on the well-founded semantics. However,
since the stable model semantics is more general, we argue that WSML-Rule
should adopt the stable model semantics, and that implementations may use the
well-founded semantics as an approximation when considering query answering.

WSML-Full unifies WSML-DL and WSML-Rule under a first-order umbrella with
extensions to support the nonmonotonic negation of WSML-Rule. A definition
of the semantics for WSML-Full, generalizing WSML-DL and WSML-Rule, is
proposed in [50, 51].

As shown in Figure 3.2(b), WSML has two alternative layerings, namely,
WSML-Core = WSML-DL = WSML-Full and WSML-Core = WSML-Flight
= WSML-Rule = WSML-Full. For both layerings, WSML-Core and WSML-Full
mark the least and most expressive layers. The two layerings are to a certain ex-
tent disjoint, namely, the interoperation between WSML-DL, on the one hand, and
WSML-Flight and WSML-Rule, on the other, is only possible through a common
subset (WSML-Core) or through a very expressive superset (WSML-Full). The
precise properties of language layering are shown in [50, 51].

3.2.3 WSML Syntax

In this section we introduce the WSML syntax, following the design principles of
“Web language” and “user-friendly surface syntax,” described in Sect. 3.2.1. We in-
troduce the surface syntax, and briefly mention the mappings of the surface syntax
to XML, RDF, and OWL, for exchange of WSML descriptions over the (Semantic)
Web. Since different WSML variants have different underlying language paradigms,
there are differences in the language constructs which may be used in each of the
variants.

Besides the mentioned mappings to XML, RDF, and OWL, which allow ex-
change over the Web, we address the “Web language” design principle through the
use of IRIs [63] for the identification of objects and resources in WSML and we
use XML Schema datatypes [23] for typing concrete data values, as described in
the “Identifiers in WSML” section. The reuse of XQuery comparators and functions
is addressed through the use of corresponding built-in predicates, as described in
Appendix C.3 in [53].

The “user-friendly surface syntax” design principle is addressed through the de-
finition of WSML. in terms of a normative surface syntax with keywords based on
WSMO. Furthermore, “inferring” and “checking” constraints on attributes are dis-
tinguished using the impliesType and ofType keywords. Finally, WSML makes a
clear distinction between the modeling of the different conceptual elements, on the
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one hand, and the specification of complex logical definitions, on the other. To this
end, the WSML syntax is split into two parts: the conceptual syntax and logical
expression syntax. The conceptual syntax this based on the structure of the WSMO
conceptual model, and is independent of the particular underlying logic; it shields the
user from the peculiarities of the underlying formal language. The logical expression
syntax provides access to the full expressive power of the language underlying the
particular variant. The basic entry points for logical expressions in the conceptual
syntax are the axioms in ontologies and assumptions, preconditions, postconditions,
and effects in goal and Web service descriptions. We describe the conceptual syntax
in the “Conceptual Syntax” section and the logical expression syntax in the “Logical
Expression Syntax” section.

We conclude with a brief description of the mappings between WSML, XML,
RDF, and OWL, and describe how these languages can be used for the exchange
of WSML ontologies over the (Semantic) Web, in the “Logical Expression Syntax”
section.

Identifiers in WSML

WSML. has three kinds of identifiers, namely, IRIs, serialized qualified names (sQ-
Names), which are abbreviated IRIs, and data values.

An IRI [63] uniquely identifies a resource in a Web-compliant way, follow-
ing the Web architecture [110]. The IRI proposed standard is the successor of
the popular URI standard and has already been adopted in various W3C ac-
tivities such as SPARQL [179]. In the surface syntax, IRIs are delimited us-
ing an underscore and a double quote ‘_“* and a double quote “’, for example,
_*http://www.wsmo.org/wsml/wsml-syntax#”.

In order to enhance legibility, an IRI can be abbreviated to an sQName, and is
of the form prefix#localname . The prefix and separator prefix# may be omitted,
in which case the name falls in the default namespace. Our concept of an sQName
corresponds with the use of QNames in RDF and is slightly different from qualified
names (QNames) in XML, where a QName is not merely an abbreviation for an IRI,
but is a tuple <namespaceURI, localname>. Since WSML is meant as a language
for the Semantic Web, we follow the Semantic Web recommendation RDF in this
respect.

Data values in WSML are strings, integers, decimals, or structured data values.
WSML defines constructs which reflect the structure of data values. For example, the
date “March 15, 2005” is represented as: -date(2005,3,15). Strings, integers, and dec-
imals corresponds to the XML Schema datatypes [23] string, integer, and decimal.
Furthermore, the datatypes recommended for use in WSML are the XML Schema
datatypes (see Appendix C.1 in [53]); however, it is also possible to use datatypes
beyond this set.

Conceptual Syntax

The WSML conceptual syntax allows for the modeling of ontologies, Web Ser-
vices, goals, and mediators. It is shared between all variants, with the exception of
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some restrictions which apply on the modeling of ontologies in WSML-Core and
WSML-DL.

Ontologies

An ontology in WSML consists of the elements concept, relation, instance, rela-
tioninstance, and axiom. Additionally, an ontology may have nonfunctional proper-
ties and may import other ontologies. We start the description of WSML ontologies
with an example which demonstrates the elements of an ontology in Listing 3.17,
and detail the elements below.

Concepts. The notion of concepts (sometimes also called “classes”) plays a central
role in ontologies. Concepts form the basic terminology of the domain of discourse.
A concept may have instances and may have a number of attributes associated with
it. The nonfunctional properties, as well as the attribute definitions, are grouped to-
gether in one frame, as can be seen from the example concept book in Listing 3.17.

Attribute definitions can take two forms, namely, constraining (using ofType)
and inferring (using impliesType) attribute definitions.” Constraining attribute defi-
nitions define a typing constraint on the values for this attribute, similar to integrity
constraints in databases; inferring attribute definitions imply that the type of the val-
ues for the attribute is inferred from the attribute definition, similar to range restric-
tions on properties in RDF Schema [29] and OWL [58]. Each attribute definition
may have a number of features associated with it, namely, transitivity, symmetry, re-
flexivity, and the inverse of an attribute, as well as minimal and maximal cardinality
constraints.

Constraining attribute definitions, as well as cardinality constraints, require
closed-world reasoning and are thus not allowed in WSML-Core and WSML-DL.
As opposed to features of roles in description logics, attribute features such as tran-
sitivity, symmetry, reflexivity, and inverse attributes are local to a concept in WSML.
Thus, none of these features may be used in WSML-Core and WSML-DL. For a
motivation on the use of constraining attributes, see [57].

Listing 3.17. An example Web Service Modeling Language (WSML) ontology

wsmlVariant _"http://www.wsmo.org/wsml/wsml—syntax/wsml—flight”
namespace {_"http://example.org/bookOntology#”,
dc _"http // purl.org/dc/elements/1.1/"}
ontology -"http :// example.org/bookOntology”
nonFunctionalProperties
dcttitle hasValue "Example Book ontology”
dc#description hasValue "Example ontology about books and shopping carts”
endNonFunctionalProperties
concept book
titte ofType _string
hasAuthor ofType author
concept author subConceptOf person
authorOf inverseOf(hasAuthor) ofType book

2 The distinction between inferring and constraining attribute definitions is explained in more
detail in Sect. 2 in [57].
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concept cart
nonFunctionalProperties
dc#description hasValue "A shopping cart has exactly one id
and zero or more items, which are books.”
endNonFunctionalProperties
id ofType (1) _string
items ofType book
instance crimeAndPunishment memberOf book
titte hasValue "Crime and Punishment”
hasAuthor hasValue dostoyevsky

relation authorship(impliesType author, impliesType document)
nonFunctionalProperties
dc#relation hasValue authorshipFromAuthor
endNonFunctionalProperties
axiom authorshipFromAuthor
definedBy
authorship(?x,?y) :— ?x[authorOf hasValue ?y] memberOf author.

Relations. Relations in WSML can have an arbitrary arity, may be organized in a
hierarchy using subRelationOf, and the parameters may be typed using parameter-
type definitions of the form (ofType type) and (impliesType type), where type is a
concept identifier. The usage of of Type and impliesType corresponds with the usage
in attribute definitions. Namely, parameter definitions with the ofType keyword are
used to check the type of parameter values, whereas parameter definitions with the
impliesType keyword are used to infer concept membership of parameter values.

The allowed arity of the relation may be constrained by the underlying logic of
the WSML variant. WSML-Core and WSML-DL allow only binary relations and,
similar to attribute definitions, they allow only parameter typing using the keyword
impliesType.

Instances. A concept may have a number of instances associated with it. Instances
explicitly specified in an ontology are those which are shared as part of the ontol-
ogy. However, most instance data exists outside the ontology in private databases.
WSML does not prescribe how to connect such a database to an ontology, since dif-
ferent organizations will use the same ontology to query different databases and such
corporate databases are typically not shared.

An instance may be member of zero or more concepts and may have a number
of attribute values associated with it; see, for example, the instance crimeAndPunish-
ment in Listing 3.17. Note that the specification of concept membership is optional
and the attributes used in the instance specification do not necessarily have to occur
in the associated concept definition. Consequently, WSML instances can be used to
represent semistructured data, since without concept membership and constraints on
the use of attributes, instances form a directed labeled graph. Because of this possi-
bility to capture semistructured data, most RDF graphs can be represented as WSML
instance data, and vice versa.

Axioms. Axioms provide a means to add arbitrary logical expressions to an ontol-
ogy. Such logical expressions can be used to refine concept or relation definitions
in the ontology, but also to add arbitrary axiomatic domain knowledge or express
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constraints. The axiom authorshipFromAuthor in Listing 3.17 states that the relation
authorship exists between any author and any book of which he is an author; con-
sequently, (dostoyesksy, crimeAndPunishment) is in the relation authorship. Logical
expressions are explained in more detail in the “Logical Expression Syntax” section.

Web Services

A Web service has a capability and a number of interfaces. The capability describes
the Web service functionality by expressing conditions over its prestates and post-
states® using logical expressions; interfaces describe how to interact with the service.
Additionally, WSML allows one to specify nonfunctional properties of a Web ser-
vice. Listing 3.18 describes a simple Web service for adding items to a shopping
cart.

Capabilities. Preconditions and assumptions describe the state before the execu-
tion of a Web service. While preconditions describe conditions over the information
space, i.e., conditions over the input, assumptions describe conditions over the state
of the world which cannot necessarily be directly checked. Postconditions describe
the relation between the input and the output, e.g., a credit card limit with respect to
its values before the service execution. In this sense, they describe the information
state after execution of the service. Effects describe changes in the real world caused
by the service, e.g., the physical shipment of some good. The sharedVariables con-
struct is used to identify variables which are shared between the preconditions and
postconditions and the assumptions and effects. Shared variables can be used to refer
to the same input and output values in the conditions of the capability. Listing 3.18
describes a simple Web service for adding items to a shopping cart: given a shopping
cart identifier and a number of items, the items are added to the shopping cart with
this identifier.

Listing 3.18. A WSML Web service description

Webservice _"http://example.org/bookService”
nonFunctionalProperties
dci#title hasValue "Example book buying service”
dc#description hasValue "A simple example Web service for adding items to a shopping cart”
endNonFunctionalProperties

importsOntology _"http://example.org/bookOntology”
capability
sharedVariables {?cartld, ?item}
precondition
definedBy
?cartld memberOf _string and ?item memberOf book.
postcondition
definedBy
forall ?cart (?cart[id hasValue ?cartld] memberOf cart implies
?cart[items hasValue ?item]).

3 Prestate (poststate, respectively) refers to the state before (after, respectively) the execution
of the Web service.
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Interfaces. Interfaces describe how to interact with a service from the requester’s
point of view (choreography) and how the service interacts with other services and
goals it needs to fulfill in order to fulfill its capability (orchestration), which is the
provider’s point of view. Choreography and orchestration descriptions are external to
WSML; WSML allows one¢ to reference any chorecography or orchestration identified
by an IRI.

Goals

Goals are symmetric to Web Services in the sense that goals describe desired func-
tionality and Web Services describe offered functionality. Therefore, a goal descrip-
tion consists of the same modeling elements as a Web service description, namely,
nonfunctional properties, a capability, and a number of interfaces.

Mediators

Mediators connect different goals, Web Services and ontologies, and enable inter-
operation by reconciling differences in representation formats, encoding styles, busi-
ness protocols, etc. Connections between mediators and other WSML elements can
be established in two different ways:

1. Each WSML clement allows for the specification of a number of mediators
through the usesMediator keyword.

2. Each mediator has (depending on the type of mediator) one or more sources
and one target. Both source and target are optional in order to allow for generic
mediators.

A mediator achieves its mediation functionality either through a Web service,
which provides the mediation service, or a goal, which can be used to dynamically
discover the appropriate (mediation) Web service.

Logical Expression Syntax

We will first explain the general logical expression syntax, which encompasses all
WSML variants, and then describe the restrictions on this general syntax for each of
the variants. The general logical expression syntax for WSML has a first-order logic
style, in the sense that it has constants, function symbols, variables, predicates, and
the usual logical connectives. Furthermore, WSML has F-logic [121] based exten-
sions in order to model concepts, attributes, attribute definitions, and subconcept and
concept membership relationships. Finally, WSML has a number of connectives to
facilitate the logic programming based variants, namely, default negation (negation
as failure), logic programming implication (which differs from classical implication)
and database-style integrity constraints.

Variables in WSML start with a question mark, followed by an arbitrary number
of alphanumeric characters, e.g., ?x, ?name, ?123. Free variables in WSML (i.e.,
variables which are not explicitly quantified) are implicitly universally quantified
outside the formula (i.e., the logical expression in which the variable occurs is the
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scope of quantification), unless indicated otherwise, through the sharedVariables
construct (see the previous section).

Terms are identifiers, variables, or constructed terms. An atom is, as usual, a pred-
icate symbol with a number of terms as arguments. Besides the usual atoms, WSML
has a special kind of atom, called molecules, which are used to capture informa-
tion about concepts, instances, attributes, and attribute values. The are two types of
molecules, analogous to F-logic:

1. Anisa molecule is a concept membership molecule of the form A memberOf B
or a subconcept molecule of the form A subConceptOf B with A and B arbi-
trary terms.

2. An object molecule is an attribute value expressions of the form A[B hasValue
C], a constraining attribute signature expression of the form A[B ofType C],
or an inferring attribute signature expression of the form A[B ofType C], with
A,B,C arbitrary terms.

WSML has the usual first-order connectives: the unary negation operator neg,
and the binary operators for conjunction and, disjunction or, right implication
implies, left implication impliedBy, and dual implication equivalent. Variables may
be universally quantified using forall or existentially quantified using exists. First
Order formulae are obtained by combining atoms using the mentioned connectives
in the usual way. The following are examples of First Order formulae in WSML.:

//every person has a father

forall ?x (?x memberOf Person implies exists ?y (?x[father hasValue

?

//yj]gl)m is member of a class which has some attribute called 'name’

exists ?x,?y (john memberOf ?x and ?x[name ofType ?y]).
Apart from First Order formulae, WSML allows the use of the negation-as-failure
symbol naf on atoms, the special logic programming implication symbol :-, and the
integrity constraint symbol !-. A logic programming rule consists of a head and a
body, separated by the :- symbol. An integrity constraint consists of the symbol !-
followed by a rule body. Negation-as-failure naf is only allowed to occur in the body
of alogic programming rule or an integrity constraint. The further use of logical con-
nectives in logic programming rules is restricted. The following logical connectives
are allowed in the head of a rule: and, implies, impliedBy, and equivalent. The fol-
lowing connectives are allowed in the body of a rule (or constraint): and, or, and naf.
The following are examples of logic programming rules and database constraints:

//every person has a father

?x[father hasValue f(?y)] :— ?x memberOf Person.

//Man and Woman are disjoint

|— ?x memberOf Man and ?x memberOf Woman.

//in case a person is not involved in a marriage, the person is a bachelor
?x memberOf Bachelor :— ?x memberOf Person and naf
Marriage(?x,?y,?z).
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Table 3.1. Web service Modeling Language variants and feature matrix

Feature Core DL Flight Rule Full
Classical negation (neg) - X - -
Existential quantification - X -
(Head) disjunction - X -
n-ary relations - - X
Metamodeling - - X
Default negation (naf) - - X

X

X

Logic programming implication - -
Integrity constraints - -
Function symbols - - -
Unsafe rules - - -

XX KX KK K
XX K K KKK X

Farticularities of the WSML Variants

Each of the WSML variants defines a number of restrictions on the logical expression
syntax. For example, logic programming rules and constraints are not allowed in
WSML-Core and WSML-DL. Table 3.1 contains a number of language features and
indicates in which variant the feature can occur, to give an idea of the differences
between the logical expressions of each variant.

3.2.4 Exchanging WSML using Semantic Web Languages

In this section we give a brief overview of the mappings from the WSML surface
syntax to XML, RDF, and OWL, along with pointers to the complete mapping(s).

WSML XML Syntax

The WSML XML syntax is essentially an XML version of the surface syntax, and
is thus very similar, both in keywords and in structure. We have defined the XML
syntax through a translation from the human-readable syntax [53] and have addition-
ally specified an XML schema for WSML..* Note that all WSML elements fall in the
WSML namespace http://www.wsmo.org/wsml/wsml-syntax#.

WSML RDF Syntax

WSML provides a serialization of all its conceptual modeling elements in RDF [52].
The WSML RDF syntax reuses the RDF and RDF Schema vocabulary to allow ex-
isting RDF(Schema)-based tools to achieve the highest possible degree of interoper-
ation. As a result, WSML can be seen as an extension of RDF(Schema); it does not
allow the use of language constructs in the language itself and does not allow full
treatment of blank nodes, because this would require reasoning with existential in-
formation, which is not allowed in the rule-based WSML variants. WSML provides

* http://www.wsmo.org/TR/d16/d16.1/v0.21/xml-syntax/wsml-xml-syntax.xsd



3.3 Summary 65

a significant extension of RDF Schema through the possibility of specifying local at-
tributes, range, and cardinality constraints for attributes and attribute features such as
symmetry, transitivity, and reflexivity. Furthermore, WSML (in its rule-based vari-
ants) provides an expressive rule language which can be used for the manipulation
of RDF data.

OWL

WSML-Core is, semantically speaking, a subset of OWL Lite. WSML-DL is seman-
tically equivalent to OWL DL, with the caveat that WSML-DL does not allow nomi-
nals, which are allowed in OWL DL, and OWL DI does not allow qualified number
restrictions, which are allowed in WSML-DL. There is a semantics-preserving map-
ping between the WSML surface syntax and the OWL abstract syntax. This mapping
allows the import of all of OWL DLP? into WSML-Core (and thus also all other
WSML variants), and the import of most of OWL DL into WSML-DL (and thus also
WSML-Full). Additionally, this mapping allows the use of OWL as an exchange
syntax for WSML-Core and WSML-DL ontologies. This mapping is described in
detail in [53].

3.3 Summary

In this chapter we have provided an introduction to two key technologies needed
for the successful realization of Semantic Web Services and semantically enabled
service-oriented architectures, namely, WSMO and WSML. WSMO provides a con-
ceptual model for Semantic Web Services which combines the design principles of
the Web, the Semantic Web, and distributed service-oriented computing in order to
provide a clear description of the elements needed to describe Web Services. WSML
formalizes WSMO by providing a concrete formal language for describing Web Ser-
vices semantically and a language framework of different language variants, incor-
porating both description logics and logic programming. This chapter is intended as
a reference for the reader for WSMO and WSML providing the key foundational
knowledge needed for the rest of the book.

® http://logic.aifb.uni-karlsruhe.de/wiki/DLP
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Introduction to Semantically Enabled
Service-oriented Architectures

Computer science is on the edge of an important new period of abstraction. A
generation ago we learned to abstract from hardware and currently we are learning
to abstract from software in terms of Service-Oriented Architectures (SOA). A SOA
is essentially a collection of services. It is the service that counts for a customer and
not the specific software or hardware components that are used to implement this ser-
vice. It is a common expectation that SOAs will quickly become the leading software
paradigm. However, we believe that these SOAs will not scale without significant
mechanization of service discovery, service adapation, service negotiation, service
composition, service invocation, and service monitoring, as well as data, protocol,
and process mediation. We envisage the future of applied computer science in terms
of SOAs which are empowered by adding semantics as a means to deal with hetero-
geneity and mechanization of service usage. This approach is called Semantically
Enabled Service-oriented Architectures or SESA for short.

4.1 SESA Background

In this section we provide an overview of the fundamental elements of the SESA
architecture, one which enables the execution of Semantic Web Services and re-
solves the fundamental challenges related to the open SOA environment. We expect
that in the near future a service-oriented world will consist of an “uncountable” num-
ber of services. Their computation will involve services searching for other services
based on functional and nonfunctional requirements, and then resolving any interop-
erability conflicts from those services selected. However, services will not be able to
interact automatically and existing SOA solutions will not scale without significant
mechanization of the service provisioning process. Hence, machine processable se-
mantics is essential for the next generation of Service-Oriented Computing (SOC) to
reach its full potential. In this chapter we define methods, algorithms, and tools form-
ing a skeleton of SESA, introducing automation to the service provisioning process,
including service discovery, negotiation, adaptation, composition, invocation, and
monitoring, as well as service interaction requiring data and process mediation.
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SOA outside a tightly controlled environment cannot succeed until semantic issues
are addressed and critical tasks within the service provisioning process are automated
leaving humans to focus on higher-level problems. While this chapter describes how
these building blocks are consolidated into a coherent software architecture, which
can be used as a blueprint for implementation, following chapters present the basic
conceptual and technical building blocks required to set up the SESA infrastructure.

SESA has evolved from the collaborative efforts of three research/standardiza-
tion groups: OASIS Semantic Execution Environment Technical Committee (SEE
TC), Web Service Modeling Execution Environment (WSMX) Working Group,
and NESSI. The aim of the OASIS SEE TC is to provide guidelines, justifica-
tions, and implementation directions for an execution environment for Semantic
Web Services. The resulting infrastructure incorporates the application of seman-
tics to service-oriented systems and provides mechanisms for consuming Semantic
Web Services. WSMX is the reference implementation of Web Service Modeling
Ontology (WSMO) and SEE. It is an execution environment for business application
integration where enhanced Web Services are integrated for various business applica-
tions. The aim is to increase business processes automation in a very flexible manner
while providing scalable integration solutions. The WSMX Working Group builds a
prototypical execution infrastructure for Semantic Web Services based on the SOA
paradigm of loosely coupled components. Finally SESA also relates to the work car-
ried out by the NESSI initiative addressing semantic aspects of the NESSI platform.
NESSI semantic technologies provide the semantics-based solutions for search and
integration, which aim to enable progressive development of SESA. The NESSI Se-
mantic Technology Working Group aims to use SESA as its roadmap defining the
development of its semantic technologies.

4.2 Service Orientation

The design of enterprise information systems has gone through several changes in
recent years. In order to respond to the requirements of enterprises for flexibility
and dynamism, the traditional monolithic applications have become substituted by
smaller composable units of functionality known as services. Information systems
must then be retailored to fit this paradigm, with new applications developed as
services, and legacy systems to be updated in order to expose service interfaces.
The drive is towards a design of information systems which adopt paradigms of
SOC together with the SOA implementation architecture and relevant Web service
technologies.

4.2.1 Service-Oriented Computing

SOC is a new computing paradigm that utilizes services as the fundamental elements
for the development of rapid, low-cost, and easily integrable enterprise applications
[171, 173]. One of the main goals of SOC is to enable the development of networks of
integrated and collaborative applications, regardless of both the platform on which
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applications or services run (e.g., the operating system) and the programming lan-
guages used to develop them.

In this paradigm, services are autonomous, self-describing, and platform-
independent computational entities, which provide a uniform and ubiquitous access
to information for a wide range of computing devices (such as desktop computers,
PDAs, cellular phones) and software programs across different platforms. Any piece
of code and any application component deployed on a system can be reused and
transformed into a network-available service. Service providers and service con-
sumers remain loosely coupled as services, independent of the context in which they
are used. Since these services are based on the service-orientation paradigm and
distinguish characteristics of the service, they can be easily described, published,
discovered, and dynamically assembled for developing distributed and interoperable
systems.

The main goal of SOC is to facilitate the integration of newly built and legacy ap-
plications, which exist both within and across organizational boundaries. SOC must
overcome and resolve heterogencous conflicts due to different platforms, program-
ming languages, security firewalls, etc. The basic idea behind this orientation is to
allow applications which were developed independently (using different languages,
technologies, or platforms) to be exposed as services and then interconnect them
exploiting the Web infrastructure with respective standards such as HTTP, XML,
SOAP, and WSDL and even some complex service orchestration standards like
BPEL.

4.2.2 Service-Oriented Architecture

The service-oriented paradigm of computation can be abstractly implemented by the
system architecture called SOA [24, 30]. The purpose of this architecture is to ad-
dress the requirements of loosely coupled, standard-based, and protocol-independent
distributed computing, mapping enterprise information systems isomorphically to
the overall business process flow [174]. This attempt is considered to be the latest
development of a long series of advancements in software engineering addressing
the reuse of software components.

Historically, the first major step of this evolution was the development of the
concept of function. Using functions, one decomposes a program into smaller sub-
programs and writing code is focused on the idea of the Application Programming
interface (API). An API, practically, represents the contract to which a software com-
ponent has to commit. The second major step was the development of the concept
of object. An object is a basic building block which contains both data and functions
within a single encapsulated unit. With the object-oriented paradigm, the notions
of classes, inheritance, and polymorphism are introduced. In this way classes can
be viewed as a lattice. The concept of service becomes the next evolutionary step
introduced with the advent of SOC and its SOA implementation architecture.

Figure 4.1 shows the the Web Services programming model, which consists of
three components: service consumers, service providers, and service registrars. Ig-
noring the detailed techniques for the connection of the three components, this model
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Figure 4.1. Web Services programming model

represents also the SOA basic model. A service registrar (also called service broker)
acts as an intermediary between the provider and the consumer, so they are able to
find each other. A service provider simply publishes the service. A service consumer
tries to find services using the registrar; if it finds the desired service it can set up a
contract with the provider in order to consume such a service and thus to do business.

The fundamental logic view of services in SOA is based on the division of ser-
vice description (called usually interface) and service implementation [174]. Service
interface defines the identity of a service and its invocation logistics. Service imple-
mentation implements the work that the service is designated to do. Based on this di-
vision, service providers and services consumers are loosely coupled. Furthermore,
the services can be significantly reused and adapted according to certain require-
ments. Because service interfaces are platform-independent and implementation is
transparent for the service consumers, a client from any communication device us-
ing any computational platform, operating system, and any programming language
should be capable of using the service. The two facets of the service are distinct;
they are designed and maintained as distinct items, though their existence is highly
interrelated.

Based on the service autonomy and the clean separation of service interfaces
from internal implementation, SOA provides a more flexible architecture that unifies
business processes by modularizing large applications into services. Furthermore,
enterprise-wide or even cross-enterprise applications can be realized by means of
services development, integration, and adaptation. Some SOA distinguished require-
ments (or rather advantages) have been analyzed as follows [195]:

e Loose coupling. Interacting services are loosely coupled by nature. They run on
different platforms, are implemented independently, and have different owners.
The model has to consider the loose coupling of services with respect to one
another.
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e Implementation neutrality. The interface should only matter, not the implemen-
tation. Services are defined independently of their implementation and should
behave neutrally with respect to it.

e Flexible configuration. Services are invoked dynamically after the discovery
process through the service requester. That is, the binding of a service provider
to the requester occurs at run time at the final phase.

e Long lifetime. Components/services should exist long enough to be discovered,
to be relied upon, and to engender trust in their behavior.

e Granularity. The granularity of a service defines the complexity and number
of functionalities defined by an individual service and is thus part of the service
model. An appropriate balance between coarse-grained and fine-grained services
depends on the way services are modeled. For too fine grained services, problems
arise when there are frequent and rapid changes.

e Teams. Computation in open systems should be conceptualized as business
partners working as a team. Therefore, a team of cooperating autonomous com-
ponents/services is a better modeling unit, instead of framing computations
centrally.

Besides the basic SOA model shown in Fig. 4.1, there are some extension works
towards SOA which depict more concepts than service registration, discovery, and
invocation. The extended SOA (xSOA) accounts for SOA deficiencies in such ar-
eas as management, security, service choreography and orchestration, and service
transaction management and coordination [170]. The xSOA is an attempt to stream-
line, group together, and logically structure the functional requirements of complex
applications that make use of the SOC paradigm.

4.2.3 SOA Implementations

Basically, Web Services seem to be becoming the preferred implementation technol-
ogy for realizing the SOA promise of maximum service sharing, reuse, and inter-
operability. From Fig. 4.1, the Web service programming model is a typical SOA
implementation. Defined by W3C, it is a software system identified by a URI, whose
public interfaces and bindings are defined and described using XML, Its definition
can be discovered by other software systems. These systems may then interact with
the Web service in a manner prescribed by its definition, using XMI.-based messages
conveyed by Internet protocols. Interactions between Web Services typically occur
as Simple Object Access Protocol (SOAP) calls carrying XML data content. Inter-
face descriptions of the Web Services are expressed using Web Services Definition
Language (WSDL). The Universal Description, Discovery, and Integration (UDDI)
standard defines a protocol for directory services that contain Web service descrip-
tions. UDDI enables Web service clients to locate candidate services and discover
their details. Service clients and service providers utilize these standards to perform
SOA’s basic operations. Service aggregators may use the Business Process Execu-
tion Language for Web Services (BPEL4WS) to create new Web Services by defin-
ing corresponding compositions of the interfaces and internal processes of existing
services.
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Web Services technology is simply a widespread accepted instantiation of SOC
providing a platform on which it is possible to develop applications taking advantage
of the already existing Internet infrastructure. This does not mean that the set of
technologies we present here are the only ones which make it possible to realize
SOC and implement SOA. Some other more conventional programming languages
or middleware platforms may be adopted as well, such as, for instance, established
middleware technologies like J2EE, CORBA, and IBM’s WebSphere MQ, and can
now also participate in a SOA, using new features that work with WSDL.

The broad use of Enterprise Application Integration (EAI) middleware supports a
variety of hub-and-spoke integration patterns [172]. EAI comprises message accep-
tance, transformation, translation, routing, message delivery, and business process
management. All of these can be used to develop services and then it also be-
comes service-orientated architecture. The Enterprise Service Bus (ESB) is an open,
standards-based message bus designed to enable the implementation, deployment,
and management of SOA-based solutions with a focus on assembling, deploying, and
managing distributed SOAs. The ESB provides the distributed processing, standards-
based integration, and enterprise-class backbone required by the extended enterprise
[112].

4.3 Execution Environment for Semantic Web Services

With the underpinning computation approach SOC, SOA is one of the most promis-
ing software engineering trends for future distributed systems. Pushed by major in-
dustry players and supported by many standardization efforts, Web Services are a
prominent implementation of the service-oriented paradigm. They promise to foster
reuse and to ease the implementation of loosely coupled distributed applications.
Although the idea of SOA targets the need for integration that is more adap-
tive to changes in business requirements, existing SOA solutions will prove difficult
to scale without a proper degree of automation. While today’s service technologies
around WSDL, SOAP, UDDI, and BPEL have certainly brought a new potential to
SOA, they only provide a partial solution to interoperability, mainly by means of
unified technological environments. Where content and process level interoperabil-
ity is to be solved, ad hoc solutions are often hard-wired in manual configuration
of services or workflows, while at the same time they are hindered by dependence
on XML-only descriptions. Although flexible and extensible, XML can only define
the structure and syntax of data. Without machine-understandable semantics, ser-
vices must be located and bound to service requesters at design time, which in turn
limits possibilities for automation. In order to address these drawbacks, the extension
of SOA with semantics offers a scalable integration, more adaptive to changes that
might occur over a software system’s lifetime. Semantics for SOA allows the defi-
nition of semantically rich and formal service models where semantics can be used
to describe both services offered and capabilities required by potential consumers
of those services. Also the data to be exchanged between business partners can be
semantically described in an unambiguous manner in terms of ontologies. By means
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of logical reasoning, semantic SOA thus promotes a total or partial automation of
service discovery, mediation, composition, and invocation. Semantic SOA does not,
however, mean replacing existing integration technologies. The goal is to build a
new layer on the top of the existing service stack while at the same time adopting
existing industry standards and technologies being used within existing enterprise
infrastructures.

4.3.1 Challenges for the Semantic Web Service Execution Environment

Talking about technology challenges in the semantic domain, we consider se-
mantics as an enabling technology to allow integration and interoperability of the
heterogenous systems. What makes the integration based on semantics a challenge is
twofold: first, the representation of information and the information itself used to be
bound tightly together; and, second, that information frequently lacks any context.
The programmer often thinks not of the data itself but rather of the structure of the
data such as schemas, data types, relational database constructs, etc. These structures
do not relate directly to the information, but rather to the assumption of what the
data should look like. In tightly coupled architectures, data structures are absolutely
necessary; since they provide for systems a way of coping with the information they
are being fed. But this assumption does not hold for distributed systems, such as the
SESA platform aimed to be.

In the upcoming years, semantics will be used more and more often as an en-
abling technology for new ways of assembling software on the fly in order to create
ad hoc systems. Computer science is entering into a new phase, where semantics
starts to play a major role. The previous generation of distributed systems was based
on abstracting from hardware, but the emerging generation is already based on ab-
stracting from software. In a world of distributed computing, it is the service that
counts for a customer and not the software or hardware components that implement
the service. However, current technological platforms are still restricted in their ap-
plication context to in-house solutions.

Future enterprise systems will not scale without properly incorporating princi-
ples that made the Web scale to a worldwide communication infrastructure. There is
a strong need for significant mechanization of service discovery, negotiation, adapta-
tion, composition, invocation, and monitoring as well as service interaction requiring
data, protocol, and process mediation; as well as a balanced integration of services
provided by human and machines. All of these technologies can be only fully auto-
mated if the semantics is considered as the core enabling technology.

In a semantics-enabled world, the coordination between systems is executed
through the use of well (semantically) described services, meaning discovered and
selected on the basis of requirements, then orchestrated and adapted or integrated.
Solving these problems is a major prerequisite to address technology challenges
where the Web of services interconnects billions of entities without the need of using
hard-coded adapters between these systems (as the current Web does for information
sources) effectively that enable context awareness and discovery, advertising, per-
sonalization, and dynamic composition of services.
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4.4 Governing Principles

We have identified a number of underlying principles which govern the design of the
architecture, its middleware, as well as modeling of business services. These princi-
ples reflect fundamental aspects for a service-oriented and distributed environment
which all promote intelligent and seamless integration and provisioning of business
services. These principles include the following:

e Service-oriented principle represents a distinct approach for analysis, design,
and implementation which further introduces particular principles that govern as-
pects of communication, architecture, and processing logic. This includes service
reusability, loose coupling, abstraction, composability, autonomy, and discover-
ability.

e Semantic principle allows a rich and formal description of information and be-
havioral models enabling automation of certain tasks by means of logical rea-
soning. Combined with the service-oriented principle, semantics allows one to
define scalable, semantically rich and formal service models and ontologies al-
lowing one to promote total or partial automation of tasks such as service discov-
ery, contracting, negotiation, mediation, composition, invocation, etc.

e Problem-solving principle reflects problem-solving methods as one of the fun-
damental concepts of artificial intelligence. It underpins the ultimate goal of
the architecture which lies in so-called goal-based discovery and invocation of
services. Users (service requesters) describe requests as goals semantically and
independently of services, while architecture solves those goals by means of
logical reasoning over descriptions of goals and services. Ultimately, users do
not need to be aware of processing logic but only need to care about the result
and its desired quality.

e Distributed principle allows one to aggregate the power of several computing
entities to collaboratively run a task in a transparent and coherent way, so that
from a service requester’s perspective they can appear as a single and central-
ized system. This principle allows one to execute a process across a number of
components/services over the network, which in turn can promote scalability and
quality of the process.

4.5 SESA Vision — Global View

The global view of the architecture, depicted in Fig. 4.2, comprises several layers,
namely, (1) stakeholders forming several groups of users of the architecture,
(2) problem-solving layer building the environment for stakeholder access to the
architecture, (3) service requesters as client systems of the architecture, (4) mid-
dleware providing the intelligence for the integration and interoperation of business
services, and (5) service providers exposing the functionality of back-end systems
as business services. In this section we describe these layers and define service types
in the architecture and underlying concepts and technology we use for architecture
implementation.
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Figure 4.2. Global view of Semantically Enabled Service-oriented Architecture (SESA)

Realizing SESA principles and providing a platform incorporating them is the
major necessity to implement the vision of Web Services. There are four types of
business services of an infrastructure which are a must for Web Services to deliver
their promises:

1. The stakeholders layer, which consists of ontologies, applications (e.g.,
e-tourism, e-government), and developer tools (GUI tools such as those for
engineering ontology/Web service descriptions; generic developer tools such as
language APIs, parsers/serializers, converters, etc.).

2. The broker layer, which consists of discovery, adaptation (including selec-
tion and negotiation), composition (Web service composition techniques such
as planning), choreography, mediation (ontology mediation — techniques for
combining ontologies and for overcoming differences between ontologies — and
process mediation — overcoming differences in message ordering, etc.), ground-
ing, fault handling (transactionality, compensation, etc.), and monitoring.

3. The base layer, which provides the exchange formalism used by the archi-
tecture, i.e., formal languages (static ontology and behavioral, i.e., capability/
choreography/orchestration, languages, connection between higher-level de-
scriptions, e.g., WSML), reasoning (techniques for reasoning over formal de-
scriptions; logic programming, description logics, first-order logics, behavioral
languages, etc.), and storage and communication.

4. Vertical services such as execution management and security (authentication/
authorization, encryption, trust/certification).
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4.5.1 Stakeholders Layer

Stakeholders form the group of various users which use the functionality of the archi-
tecture for various purposes. Two basic groups of stakeholders are identified: users
and engineers. Users form the group of those stakeholders for which the architecture
provides end-user functionality through specialized applications. For example, users
can perform electronic exchange of information to acquire or provide products or ser-
vices, to place or receive orders, or to perform financial transactions. In general, the
goal is to allow users to interact with business processes on-line while at the same
time reducing their physical interactions with back-office operations. On the other
hand, the group of engineers form those stakeholders who perform development and
administrative tasks in the architecture. These tasks support the whole SOA life cy-
cle, including service modeling, creation (assembling), deployment (publishing), and
management. Different types of engineers could be involved in this process, ranging
from domain experts (modeling, creation), to system administrators (deployment,
management), to software engineers.

4.5.2 Problem-Solving Layer

The problem-solving layer contains applications and tools which support stake-
holders during formulation of problems/requests and generates descriptions of such
requests in the form of user goals.Through the problem-solving layer, the user will be
able to solve his/her problems, i.e., formulate a problem, interact with the architec-
ture during processing, and get his/her desired results. This layer contains back-end
systems which directly interface the middleware within business processes, special-
ized applications built for specific purpose in a particular domain, which also provide
specific domain ontologies, and developer tools providing functionality for devel-
opment and administrative tasks within the architecture. Developer tools provide a
specific functionality for engineers, i.¢., domain experts, system administrators, and
software engineers. The functionality of developer tools covers the whole SOA life
cycle, including service modeling, creation (assembling), deployment (publishing),
and management. The vision is to have an integrated development environment (IDE)
for management of the architecture. It should aid the developers through the devel-
opment process, including engineering of semantic descriptions (services, goals, and
ontologies), creation of mediation mappings, and interfacing with architecture mid-
dleware and external systems. By combining this functionality, a developer will be
allowed to create and manage ontologies, Web Services, goals and mediators, create
ontology-to-ontology mediation mappings, and deploy these mappings to the mid-
dleware. Applications provide a specialized functionality for architecture end-users.
They provide specialized domain-specific ontologies, user interfaces, and applica-
tion functionality through which stakeholders interact with the architecture and its
processes. Through specialized applications in a particular application settings, the
technology and its functionality are validated and evaluated.
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4.5.3 Service Requesters Layer

Service requesters act as client systems in a client—server settings of the architecture.
They are represented by goals created through problem/request formulation by which
they describe requests as well as interfaces through which they wish to perform con-
versation with potential services. Service requesters are present for all applications
and tools from the problem-solving layer and are bound to a specific service seman-
tics specification.

4.5.4 Middleware Layer

Middleware is the core of the architecture providing the main intelligence for the
integration and interoperation of business services. For purposes of the SESA,
we call this middleware “semantic execution environment.” The architecture defines
the necessary conceptual functionality that is imposed on the architecture through the
underlying principles defined in Sect. 4.2. Each such functionality could be realized
(totally or partially) by a number of so-called middleware services (see Sect. 4.5.6)
We further distinguish this functionality in the following layers: base layer, broker
layer, and vertical layer.

The vertical layer defines the middleware framework functionality that is used
across the broker and base Layers but which remains invisible to them. This tech-
nique is best understood through the so-called “Hollywood principle” that basically
means “Don’t call us, we’ll call you.” In this respect, framework functionality always
consumes the functionality of broker and base layers, coordinating and managing
overall execution processes in the middleware. For example, discovery or data me-
diation is not aware of the overall coordination and distributed mechanism of the
execution management.

o Execution management defines the control of various execution scenarios
(called execution semantics) and handles distributed execution of middleware
services.

e Security defines a secure communication, i.¢., authentication, authorization,
confidentiality, data encryption, traceability, or nonrepudiation support applied
within execution scenarios in the architecture.

The broker layer defines the functionality which is directly required for a goal-
based invocation of Semantic Web Services. The broker layer includes:

e Discovery, which defines tasks for identifying and locating business services
which can achieve a requester’s goal.

e Choreography, which defines formal specifications of interactions and
processes between the service providers and the client.

e Monitoring, which defines a monitoring of the execution of end-point services.
This monitoring may be used for gathering information on invoked services, e.g.,
quality of service (QoS) related or for identifying faults during execution.

e Fault handling, which defines the handling of faults occurring within the execu-
tion of end-point Web Services.
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e Adaptation, which defines an adaptation within a particular execution scenario
according to the user’s preferences (e.g., service selection, negotiation, contract-
ing).

e Mediation, which defines interoperability at the functional, data, and process
levels.

o Composition, which defines a composition of services into an executable work-
flow (business process). It also includes orchestration, which defines the exe-
cution of a composite process (business process) together with a conversation
between a service requester and a service provider within that process.

e Grounding, which defines a link between a semantic level and a nonsemantic
level (e.g., WSDL) used for service invocation.

The base layer defines functionality that is not directly required in a goal-based
invocation of business services; however, they are required by the broker layer for
successful operation. The base layer includes:

o Formal languages, which define syntactical operations (e.g., parsing), with se-
mantic languages used for semantic description of services, goals, and ontolo-
gies.

e Reasoning, which defines reasoning functionality over semantic descriptions.
Storage and communication, which defines persistence mechanism for various
elements (e.g., services, ontologies) as well as inbound and outbound communi-
cation of the middleware.

The SESA middleware can operate in a distributed manner when a number of
middleware systems connected using a shared message space operate within a net-
work of middleware systems and empowering this way a scalability of integration
processes. The SESA consists of several decoupled services allowing independent
refinement of these services — each of them can have its own structure without hin-
dering the overall SESA. Following the SOA design principles, the SESA separates
concerns of individual middleware services, thereby separating service descriptions
and their interfaces from the implementation. This adds flexibility and scalability for
upgrading or replacing the implementation of middleware services which adhere to
required interfaces.

4.5.5 Service Providers Layer

Service providers represent various back-end systems. Unlike back-end systems
in the service requesters layer which act as clients in a client—server setting of
the architecture, the back-end systems in the service providers layer act as servers
which provide certain functionality for certain purposes exposed as a business
service to the architecture. Depending on the particular architecture deployment
and integration scenarios, the back-end systems could originate from one organi-
zation (one service provider) or multiple organizations (more service providers)
interconnected over the network (Internet, intranet, or extranet). The architecture thus
can serve various requirements for business-to-business (B2B) integration, EAIL or
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application-to-application (A2A) integration. In all cases, functionality of back-end
systems is exposed as semantically described business services.

4.5.6 Services in SESA

While some of the SESA functionality is provided as services, the rest remain as the
entities required to let the overall system function — they are not services in terms of
a SOA. While the middleware and service requesters layers build SESA in terms of
services (with some exceptions), the problem-solving layer adds the set of tools and
entities which makes SESA a fully fledged semantic SOA.

The core aspect of SOA is the service. In this respect, we distinguish two types
of services in SESA, namely, middleware services and business services:

1. Middleware services are necessary to enable particular functionality of the
architecture — they are the main facilitators for integration, search, and medi-
ation of business services.

2. Business services are exposed by service providers, their back-end systems
which are external to SESA. Business services are subject of integration and
interoperation within the architecture (facilitated by the middleware services)
and usually provide a certain value for architecture stakeholders. Such services
are in SESA semantically described conforming to a specific semantic service
model.

In this respect, the SESA defines the scope of particular middleware services
in terms of the functionality they should provide. In addition, the SESA defines a
semantic service model for the business services on which the SESA operates. Par-
ticular business services are, however, subject to modeling in application-oriented
scenarios. For this purpose, domain-specific ontologies can be designed as part of
SESA application design or evaluation. With respect to the distinction between mid-
dleware services and business services , the SESA middleware is designed as the
SOA on its own. However, it is designed as the facilitator for the integration of se-
mantic business services and as such is not currently considered as semantically en-
abled but rather as semantically enabling. In order to illustrate the above, Fig. 4.3
depicts middleware and business services within the scope of SEE architecture and
SESA, respectively.

4.5.7 Underlying Concepts and Technology

The SESA implementation will build on the underlying concepts and technology
provided as the essential input for the work outlined by the roadmap. Development
of these concepts and technology started before 2007. SESA builds on and further
extends specifications around the conceptual model defined by WSMO, WSML, and
reference implementation for the middleware called WSMX. WSMO provides a con-
ceptual model describing all relevant aspects of Web Services in order to facilitate
the total or partial automation of service discovery, composition, invocation, etc. The
description of WSMO elements is represented using the WSML family of ontology
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languages which consists of a number of variants based on different logical for-
malisms and different levels of logical expressiveness. WSMO and WSML thus pro-
vide grounds for semantic modeling of services as well as for a middleware system
which specifically enacts semantic SOAs. Reference implementation of this middle-
ware system is called WSMX. WSMO is the model being developed for purposes of
modeling of business services. WSMX is the reference implementation of the SESA
providing various functionalities in a form of middleware services which facilitates
integration of semantic business services. In addition, the Web Service Modeling
Toolkit (WSMT) provides an end-user IDE for modeling of business services and
run-time management of the middleware environment.

4.6 SESA Roadmap

With respect to the architecture vision described, we present the scope of the research
roadmap for the upcoming years. The research roadmap is defined in a number of
research areas, each having defined its goals for the period of the roadmap. Each
research goal usually combines major research challenges in Semantic Web Services
and SESA together with an implementation effort related to it. The research area
and its goals have a corresponding architecture component. Thus, on the basis of
the architecture vision and the global view, we identify the following research areas
as architectural components which are further distinguished in layers as depicted in
Fig. 4.4:
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e The problem-solving layer, which consists of ontologies, applications (e.g.,
e-tourism, e-business, e-government), and developer tools (GUI tools such as
those for engineering ontology/Web service descriptions; generic developer tools
such as language APIs, parsers/serializes, converters, etc.).

e The broker layer, which consists of discovery, adaptation (including selection and
negotiation), composition (Web service composition techniques such as plan-
ning), choreography, mediation (ontology mediation — techniques for combin-
ing ontologies and for overcoming differences between ontologies — and process
mediation — overcoming differences in message ordering, etc.), grounding, fault
handling (compensation, etc.), and monitoring.

e The base layer, which provides the exchange formalism used by the architecture,
i.e., formal languages (static ontology and behavioral, i.e., capability/choreog-
raphy/orchestration, languages, connection between higher-level descriptions),
reasoning (techniques for reasoning over formal descriptions; logic program-
ming, description logic, first-order logic, behavioral languages, etc.), and storage
and communication.

e Vertical services such as execution management and security (authentication/au-
thorization, encryption, trust/certification).

Each of these components forms a research area for which further goals are iden-
tified in following sections.

4.7 SESA Research Areas and Goals

This section describes in more detail research areas which as a result build the func-
tional components that play a role in the SESA. For each research area, the descrip-
tion of the area and the goals are described.
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4.7.1 Ontologies

Ontologies are community contracts about a representation of a domain of discourse.
Representation here includes (1) formal parts that can be used for machine reasoning
and (2) informal parts like natural language descriptions and multimedia elements
that help humans establish, maintain, and renew consensus about the meaning of
concepts. Ontologies as formal representations of a domain have been proposed for
quite a long time as a cure to interoperability problems and problems of applica-
tion integration, and the Semantic Web community has made a lot of progress in
developing stable infrastructure and standardized languages for the representation of
ontologies. Also, impressive tools and validated methodologies are available. How-
ever, a major bottleneck towards business applications of Semantic Web technology
and machine reasoning is the lack of industry-strength ontologies that go beyond
academic prototypes. The design of such ontologies from scratch in a textbook-style
ontology engineering process is in many cases unattractive, for it would require
significant effort, and because the resulting ontologies could not build on top of
existing community commitment. Also, real-world problems of data and systems
interoperability can only be overcome using Semantic Web technology if ontologies
exist that represent the very standards currently in use in systems and databases.
Such standards, though mostly informal in nature, are likely the most valuable asset
on the way to real business ontologies that can help solve real business interop-
erability problems, since they reflect some degree of community consensus and
contain, readily available, a wealth of concept definitions. However, the transfor-
mation of such standards into useful ontologies is not as straightforward as it appears.

Goals and Tasks

e Maturing Semantic Web foundations, so that they become compatible with
the real-world complexity and scale. In particular, the social interaction and eco-
nomic dimension of ontologies must be defined.

— Ontology engineering. Methodologies for and prototypes of industry-strength
business ontologies, e.g. the gen/tax methodology for deriving ontologies
from existing hierarchical standards and taxonomies (UNSPSC, eCl@ss, ...)
and eClassOWL, the first serious attempt at building an ontology for e-
business applications; and in general advancing the state of the art in
e-business data and knowledge engineering, including metrics for content.

—  Community-driven ontology building. Methodologies and techniques for
evolution of ontologies managed by the user community, including semi-
automated approaches and OntoWiki — a Wiki-centric ontology building
environment.

—  Economic aspects of ontology building and usage. Building ontologies con-
sumes resources, and in an economic setting, these resources are justified and
will be spent (by rational economic actors, at least) only if the effort needed
to establish and keep alive a consensual representation of a domain of dis-
course is outweighed by the business gain, in terms of cost, added value, or



4.7 SESA Research Areas and Goals 85

strategic dimensions, e.g., process agility. This research branch fuels the use
of ontologies in business applications.

e Building ontologies for core challenges of information systems in order to
realize and evaluate the business benefits and to identify the open research
challenges.

— Application ontologies. Ontologies developed for a particular domain such
as in e-business, e-government, e-tourism, etc. This includes semantics-
supported business process management for mechanization of business
process management, ontology-supported electronic procurement, and analy-
sis of the true complexity of business matchmaking, financial reporting, etc.

4.7.2 Applications

All the activities gathered around development of the SESA framework must be
tightly coupled to the development and the implementations of the use cases proving
the viability of the SESA framework. There are many technologies in the area of
Semantic Web Services mainly presented in academic workshops and conferences
where various use cases are being defined in alienation. In addition, there does not
exist any unified methodology which could be used for comparing these technolo-
gies and more importantly, there is no way for industry to evaluate the robustness,
applicability, and added values of these technologies. Therefore, progress in scien-
tific development and in industrial adoption is thereby hindered.

Goals and Tasks

It is the goal of applications to analyze processes, infrastructures, and the results of
existing real-world scenarios, and to develop a standard set of problems and a public
repository for such problems. In addition, the goal is to develop and standardize a
community-agreed evaluation methodology:

e Define the set of standard problems and their levels. Develop a methodology
for evaluating the functionality (versus performance) of semantic service tech-
nologies. On the basis of our experience with a group working on the SWS Chal-
lenge initiative, applications aim to be involved in a larger community through
the W3C Test-Bed Incubator Group.

e Support of scalable public collaborative development of new problem sce-
narios and associated services. In this development, the aim is to standardize
the methodology and the infrastructure.

e The standard methodology for peer review of solutions. The applications
should refrain from recommending technologies or from providing solutions to
the Semantic Web Service problems. The focus should be on standardizing the
evaluation methodology.

4.7.3 Developer Tools

An IDE is defined as a type of computer software that assists computer programmers
to develop software and IDEs such as the Eclipse Java Development Toolkit (JDT) or



86 4 Introduction to Semantically Enabled Service-oriented Architectures

the NetBeans IDE for developing software in the Java programming language have
proven that the productivity of the Java developer can be improved by providing all
the tools required by the developer side by side and integrated with one another. The
breadth of the field of semantics means that one IDE for all the different languages
and technologies is unlikely to happen; however, using technologies like the Eclipse
platform will allow the developer to place individual tools or indeed individual IDEs
together in order to build the IDE with the tools needed to perform the job at hand. A
good example of where such a combination of IDEs would be useful is the Semantic
Web Service field. The Eclipse Web Tool Platform (WTP) provides a collection of
tools for simplifying the process of building Web service based applications, combin-
ing the WTP with an IDE for describing Web Services semantically. With semantics
becoming more centric to modern computer science, many different combinations of
tools that at this stage cannot even be contemplated will be required. The flexibility
of platforms like Eclipse gives a form of future-proofing and puts the design and
scale of the resulting IDE into the hands of the user. When describing tools for se-
mantic technologies it is very easy to become focused primarily on ontologies and to
forget that there are many different technologies that require tool support. Research
topics like Semantic Web Services and semantic business processes are producing
many forms of semantic description that must be created by some developer in
order to deploy such technologies. Only now are developers of semantic descriptions
receiving limited tool support that allows them to focus on the problem at hand
and stop grappling with low-level problems like syntax, testing, and deployment of
their descriptions. Within the scope of this roadmap the aim is to provide guidelines
for the types of tools that should exist within an IDE for a given semantic technology.

Goals and Tasks

e Creation and maintenance. Tool support must be available for creating the ac-
tual descriptions themselves. It is important that users of different skill levels are
supported within the IDE; thus, editing support at different levels of abstraction
should be provided. Some users may be very comfortable dealing with textual se-
mantic descriptions, while others may require more visual paradigms for creating
descriptions. These different levels of abstraction can also benefit the skilled en-
gineer. Considering ontologies, it may be more convenient for the engineer to
create an ontology using a textual representation within a text editor and then to
use a graph-based ontology engineering solution to learn more about the ontol-
ogy and tweak the model that has been created.

e Validation. The most common problem that occurs when creating semantic de-
scriptions is incorrect modeling. It can be very easy for an engineer to make a
mistake without any tool support. Validation of semantic descriptions is a non-
trivial task and validation at both the syntactic and the semantic level can vastly
reduce the time developers spend debugging their descriptions. By syntactic val-
idation we mean checking that the actual syntactic structure of the semantic de-
scription is correct and by semantic validation we refer to checking that syntac-
tically correct descriptions are semantically valid.
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e Testing. Once valid semantic descriptions exist the engineer needs to ensure
that they behave in the expected manner in their intended environment prior
to deploying them. Having testing integrated into the development environment
reduces the overhead of the user performing a lengthy, iterative, deploy-test sce-
nario. The engineer will more than likely perform a deploy-test scenario anyway,
but having an initial cycle within the development environment can significantly
reduce the length of this cycle and the time taken to perform it.

e Deployment. Ultimately the descriptions created within the development envi-
ronment must be used in some run-time system. Deploying descriptions can also
be a huge overhead for the engineer and having tool support in an IDE can pre-
vent mistakes occurring at this crucial stage of the process.

4.7.4 Discovery

Within a SOA the discovery of services is the essential building block for creating
and utilizing dynamically created applications. However, current technologies only
provide a means to describe service interfaces on a syntactical level, providing only
limited automation support. Existing solutions for service discovery include UDDI,
a standard that allows programmatically publishing and retrieving a set of structured
information belonging to a Web service; however, it allows one to retrieve services by
predefined categories and keywords, not by their actual semantic properties. There is
a lack of means that allow the description of functional and nonfunctional properties
of a service on a semantic level. Only with such descriptions is a precise discovery
possible.

Given a description of a service, the problem of discovering a desired service
can be seen as an information-retrieval problem, which uses keywords to express
the desire and uses a document index to match them. However, for mechanizing the
discovery task a more fine-grained approach to discovery is required, e.g., to restrict
the search space along specific parameters, like location, provider, price, etc. It can
be seen as a search for a semistructured entity. Here approaches developed in the
context of the Semantic Web, in particular the use of ontologies are a promising
approach.

Goals and Tasks

e Service and domain ontologies. In order to provide a semantic discovery service
both service requests and offers need to be described on a semantic level. While
there exist some proposals for upper-level ontologies like WSMO and OWL-S,
we need to refine them and provide guidelines for their usage and accompanying
domain ontologies.

e Language and reasoning integration. Potentially many different logical for-
malisms can be used to annotate services. Each comes with a specific trade-off
between expressivity and computational complexity. It has to be investigated for
which use cases a particular formalism is suitable. In addition the reasoning en-
gine for a particular formalism needs to be integrated into the discovery context,
such that its usage becomes transparent to the user of a discovery engine.
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e Nonfunctional properties. Research around service discovery has so far paid
much attention to the specification of the functional properties of a service;
however, only little effort has been spent on the investigation of the usage of
nonfunctional properties within the discovery process. Specific ontologies and
matchmaking techniques have to be developed in order to allow a semantic re-
trieval on nonfunctional properties.

e Field deployment and verification of existing discovery strategies. While
many concrete formalisms have been proposed, only a few case studies have
been performed to validate the appropriateness of a particular approach. Further
real-world use cases are required in order to adopt the existing semantic discov-
ery approaches for practical needs.

4.7.5 Adaptation

After discovering a set of potentially useful Web Services, a semantic user agent
needs to find out the concrete offers available at the Web Services and that are rel-
evant to the user’s goal, generally by communicating with the Web service or with
its provider. This process filters out the discovered Web Services that cannot fulfill
the goal. This step is required as it is not feasible for a Web service to provide an
exhaustive semantic description of all its potential offers. The process of checking
whether and under what conditions a service can fulfill a concrete goal is called
negotiation in SESA. The results of negotiation are filtered using the functionality
of the discovery component to consider only the services that have the appropri-
ate functionality and also nonfunctional properties acceptable to the user. Filtering
is followed by building a ranking/order relation based on nonfunctional property
criteria like price, availability, etc. Once a list of Web Services than can fulfill the
user’s concrete goal has been prepared, a SESA must then choose one of the services
to invoke. It is important that this selection is tailored to the user’s needs, as, for
example, while one user may require high quality, another may prefer low price.
This process is called selection. Negotiation, ranking, and selection are tasks of the
Adaptation Working Group.

Goals and Tasks

e Semantic and multicriteria based ranking and selection. Ranking and selec-
tion of services could be done along more than one dimension. For example,
users might be interested in the cheapest and fastest service providing a cer-
tain functionality. A ranking and selection solution which uses semantic descrip-
tions of multiple nonfunctional properties and ranks the services on the basis
of their attached logical expressions’ nonfunctional properties representations
should be developed. This involves development of semantic and multicriteria
ranking algorithms and design and implementation of a semantic and multicrite-
ria ranking component.

e Context-based ranking and selection. Service ranking and selection must con-
sider contextual information in order to provide relevant results. The goal is to
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develop models and algorithms for context-aware ranking and selection. This
involves development of context-ranking algorithms.

e Social-based ranking and selection. Service ranking and selection remains an
open and controversial problem in terms of both social and technical aspects.
From a social point of view an honest and fair mechanism is required. An aspect
which might be useful especially for ranking services is the “social” aspect of
consuming services. Previous customers who have used a service could provide
feedback about the service. Furthermore not only users but also groups of users,
communities, can be used to “compute’ the ranking values of services.

e Negotiation algorithms. Negotiation support with use of communication to es-
tablish details of Web service offers relevant to user’s needs.

4.7.6 Composition

Composition involves methods for Web service composition (WSC), starting from
Web service descriptions at various levels of abstraction, specifically, the functional
level and the process level. The WSC area is stillat a very early stage of its devel-
opment. Several techniques have been proposed, mostly based on Al planning or on
logical deduction, but all of those still have severe shortcomings. The existing tech-
niques (1) largely or even completely ignore the constraints given in the background
ontology in which the Web Services are specified, or (2) largely or even completely
ignore the complex inner behavior and interfaces of Web Services, or (3) have severe
scalability problems, solving only toy problems with few services, or they suffer
from several of these deficiencies.

Goals and Tasks

o Development of a scalable tool for WSC with powerful background ontolo-
gies and partial matches. The goal is to overcome the lack of a technique that
combines adequate treatment of background ontologies (deficiency 1 described
above) with scalability (deficiency 3 described above). This will be achieved
by building on logics-based search space representations and heuristic functions
originating in the area of Al planning.

e Development of a scalable tool for WSC with plug-in matches, dealing with
business policies. The goal is to overcome the lack of a combination of defi-
ciencies 1 and 3 described above through a particular focus on business process
management scenarios. In those, scalability is particularly urgent, since enter-
prises deal with thousands of services from which the composed service should
be combined. Further, business policies — rules governing how services can be
executed within or between enterprises — are of paramount importance. Scala-
bility, even in the presence of business policies, will be achieved by exploiting
plug-in matches rather than partial matches, and by exploiting the typical forms
of ontologies occurring in practice.

o Integration of techniques for functional-level and process-level WSC. The
goal is to overcome the lack of a combination of deficiencies 2 and 3 described
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above, and potentially to build technology that overcomes all three deficiencies
(1-3). The idea is to combine techniques from functional-level and process-
level WSC, first by establishing ways for their interplay, and later by integrating
their underlying core principles. Regarding their interplay, functional-level and
process-level WSC essentially provide different trade-offs between accuracy and
computational cost; they can be combined to mutually profit from c¢ach other’s
benefits. Regarding the underlying principles, the most effective process-level
composition methods today are based on binary decision diagrams; this will be
replaced with the logics-based search space representation underlying advanced
functional-level composition. This approach allows for more flexibility and can
be used to model and take into account also the background ontology, while at
the same time reducing computational costs through consequent exploitation of
problem structure.

4.7.7 Choreography

Techniques for service choreography play a key role in creation of new opportunities
for collaborations between service requesters and providers, and thus for creation of
new services. The choreography part of SESA defines formal specifications of inter-
actions and processes between the service providers and clients. Current approaches
to service choreography languages have been criticized for being too procedurally
oriented. With the move towards service orientation, where entities are autonomous
and need to agree on the collaborations between them, where no central point of
control might exist, a more declarative modeling style for interactions is required
(i.e., “what” without having to state the “how”). Moreover, reasoning techniques
for such a language that would enable a flexible and dynamic integration of service
requesters and providers in a collaborative environment are currently missing.

Goals and Tasks

e Declarative choreography language. The goal here is to develop a declarative
process language which should allow for formal specifications of interactions and
processes between the service providers and clients, Such a declarative language
would enable non-IT experts to easily represent service behaviors and interac-
tions, enabling a more flexible way of engaging in new collaborations.

o Reasoning tasks for choreography. The goal here is to define reasoning tasks
that should be performed using the declarative language. Verification techniques
such as contracting or enactments are examples of reasoning tasks. Such tech-
niques will enable an automated, flexible, and dynamic integration of service
requesters and providers in a collaborative environment.

e Tool support for choreography. The goal here is to implement an engine to sup-
port the execution of interactions, as well as to support reasoning in the proposed
declarative language.
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4.7.8 Mediation

Heterogeneity problems and mediators have been intensively investigated in the last
decade but the key solution that would enable the decisive leap towards automation
is yet to be found. Semantics is changing the problem specifications and service-
orientation paradigms offer new ways of designing, deploying, and using mediators
while at the same time posing new challenges and setting new requirements. That
is, data and processes can be formally and unambiguously described, while services
and SOAs allow the development of decoupled, (ransparent, and flexible software
components, including mediators.

Goals and Tasks

Advanced support for data mediation. Semiautomatic design-time tools
should be developed in order to allow domain experts to identify and capture
the heterogeneity problems between different models of overlapping domains.
Special attention will be given to user profiles and expertise levels in order to
separate the tools for trained domain experts and the tools designated for ca-
sual users of ontologies. Furthermore, at this level, alignments between various
models will be part of a community validation process where users can add and
remove links between the models in order to achieve and maintain agreed-upon
interlinked models.

Advanced support for process mediation. Heterogeneity appears on the
process level as well no matter whether these processes are enterprise internal
processes or public processes used in describing the visible behavior of particular
services. Such heterogeneous processes need to be part of collaborative scenarios
that can range from simple peer-to-peer interaction to complex compositions.
Semiautomatic tool support allowing the tailoring of such processes in order to
overcome the heterogeneity problems should be provided. Further, more such
tools should support annotation of existing process representation standards with
semantics based on ontological domain models.

Service mediation by mediation services. Mediator systems able to resolve spe-
cific types of heterogencity problems should be encapsulated and deployed as
mediation services. Such services should be developed for well-defined media-
tion scenarios while preserving the generality of their offered functionality.
Semantic descriptions for the mediation services and mediation libraries.
Mediation services should be semantically described as any other resources. In
this way their functionality can be properly advertised and their intended usage
explicitly stated. Furthermore, they can become part of an intelligent mechanism
for service discovery, composition, and invocation. Additionally, such semanti-
cally described mediation services will be organized in semantic mediation pat-
terns that can be directly applied in complex heterogeneity scenarios. In addition,
such services should be organized in libraries supporting intelligent mediation
service retrieval (by providing customizable mediators classifications), patterns
construction (based on the semantic descriptions of the mediation service and on
the mediation goal to be achieved), and governance mechanisms (by exploring
service and patterns dependencies and impact analysis).
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4.7.9 Grounding

Legacy systems represent valuable assets for most of their owners and usually com-
pletely replacing them is not an option. As such, methodologies that will allow the
integration of these systems with the new emerging paradigms and technologies
have to be developed. For example, XML schemas and XML data have to be lifted
to ontological level in order to allow semantic-aware systems to act on this data. In
addition, since all tasks related to discovery, selection, composition, etc. operate in
SESA on semantic descriptions, the link between a semantic service and the underly-
ing technology for communication (e.g., HT'TP, SOAP, etc.) needs to be defined. The
basis for grounding has been established within the W3C Semantic Annotations for
WSDL Working Group (SAWSDL WG), allowing hooking semantic descriptions
with WSDL elements.

Goals and Tasks

e Semiautomatic tools allowing the creation of transformation between
syntax-based and semantic models. Specifying the transformations between
Web service XML messages and the semantic data currently requires deep
knowledge both of the structure of the XML message and of the ontology.
Methods for semiautomated creation of grounding should be created.

e Grounding to other specifications. Grounding definitions to specifications other
than WSDL should be defined. It should be possible to use, ¢.g., REST services
with semantic descriptions, etc.

4.7.10 Fault Handling

Fault handling defines the handling of faults or errors occurring within the execution
of end-point Web Services. Fault handling is important in SESA as the effect of
a Web service failure will reach beyond the scope of the individual service if it is
part of a composition. The aim of fault handling is to ensure that the failure of the
service has a minimal impact, and that the most appropriate action is taken to deal
with it. This may be simply returning an error message to the user and terminating
any further actions. It may involve more complex tasks such as replacement of a
failed service with a substitute service, or rolling back actions previously carried
out by other services in a composition .Currently the BPEL specification has some
provision for fault handling via the catches and some support for rollback. The WS-
Transaction family of specifications from OASIS also has provision for basic fault
handling, including distinguishing application faults from communication faults.

Goals and Tasks

e Increased automation of fault handling. Semantic descriptions of services in
SESA will enable an increased level of automation in fault handling. Current
fault handling techniques allow either a very generic level of fault handling (e.g.,
gracefully exit and report errors) for all services, or require specific actions to be
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hard-coded for each service. The aim will be able to make full use of the seman-
tic descriptions and reasoning to make intelligent decisions about fault handling
automatically (e.g., in this context a particular error can be ignored).

e More complex fault handling tasks. Tasks such as automatic service substitu-
tion are rarely carried out in current SOA-based systems, as there is not sufficient
semantic information about services to allow an equivalent service to be identi-
fied and substituted. The aim will be to increase the use of more complex fault
handling tasks in SESA with the aid of semantic descriptions and reasoning.

4.7.11 Monitoring

Monitoring is concerned with checking the progress of service execution and ad-
vising the user/agent of abnormal events. Within SESA, monitoring of services is
essential as the behavior of individual services has an effect on successful comple-
tion of a composition. Detecting failure or abnormalities will require some action to
be taken (e.g., rollback previous actions, or substitute failed service).

Currently the most popular methods for Web service monitoring are based around
the Management Using Web Services MUWS) OASIS specification, which defines
a flexible, expandable approach to monitor manageable resources. Specifically Web
service monitoring is handled under a subspecification called Management of Web
Services (MOWS).

MUWS defines how the ability to manage, or, how the manageability of, an arbi-
trary resource can be made accessible via Web Services. Manageable resources can
be accessed with a Web service end point. The manageability consumer exchanges
messages with the end point in order to subscribe to events, get events, and request.
The type of information available is things such as number of requests, number of
failed requests, number of successful requests, service time, maximum response
time, and last response time.

Goals and Tasks

e Monitoring framework based on ontologies. Currently MUWS defines para-
meters for monitoring based on a rigid XML schema. A move to a more flexible
ontology-based definition would give more expressivity and allow monitoring to
be tailored to a specific context.

e Increased automation of monitoring and link to fault handling. In a more
automated SESA-based system, the system should be able to proactively monitor
the execution of services, identify when a particular abnormality has occurred,
and take the best action at the time to deal with it. For example, if a service
failed the system should detect it and replace it with another service that performs
the same task. Current methods of monitoring will identify problems with Web
Services but there is no automatic next step to fault handing and recovery. This
should be included in the scope of SESA.
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4.7.12 Formal Languages

Descriptions in SESA need different formal languages for the specification of differ-
ent aspects of knowledge and services. These descriptions can be decomposed into
four dimensions: static knowledge (ontologies), functional description (capabilities),
behavioral description, and nonfunctional properties. There are several knowledge-
representation formalisms used for formal languages, including description logic and
logic programming, datalog subset of F-logic, Horn subset of F-logic with negation
under the well-founded semantics, description logic SHIQ, first-order language with
nonmonotinic extensions, etc.

Goals and Tasks

The major objective is to integrate first order logic based and nonmonotonic logic
programming based languages, the explicitization of context for use with scoped
negation, and the development of rules for the Semantic Web (through the W3C
RIF working group). Furthermore, requirements for the functional descriptions of
services and as well as semantics for Web service functionality need to be devised.
Requirements need to be gathered for the description of a choreography and an or-
chestration and a semantics needs to be devised. Finally, the purpose and usage of
nonfunctional requirements need to be investigated. In particular, the goals will be:

o Integrating knowledge based on classical first-order logic and nonmonotonic
logic programming. Important issues are the representational adequacy of the
integration, as well as decidable subsets and a proof theory, so that reasoning
becomes possible; scoped default negation; rules for the Semantic Web — RIF
Working Group; connection between Semantic Web languages RDF, OWL.

e Functional specification of services and a semantics needs to be devised
which can be combined with the language for the description of ontologies, in
order to enable the use of ontologies for the description of Web service function-
ality. An important use case for the functional description of services is discovery.
Therefore, it is expected that many requirements for the functional description of
services will come from the discovery research goal.

e Advanced behavioral description. There exist several formal languages which
are suitable for behavioral description. Examples are transaction logic, situation
calculus, and action languages. Requirements need to be gathered for the descrip-
tion of choreography and an orchestration and semantics needs to be devised. A
key challenge is the combination of this language with ontology languages in or-
der to enable the reuse of ontology vocabulary in the choreography and orches-
tration descriptions. Finally, this language needs to be connected to the language
for capability description in order to prove certain correspondences between the
functional and behavioral descriptions of services.

e Nonfunctional properties. Nonfunctional properties can at least be divided into
two categories: (1) metadata, e.g., author, description, etc., of the WSML state-
ments in a description and (2) actual nonfunctional properties, i.e., actual prop-
erties of services (e.g., pricing, QoS, transactions). Nonfunctional properties re-
quire a deeper investigation into their purpose and their usage.
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4.7.13 Reasoning

The SESA necessitates effective reasoning for different tasks such as service dis-
covery, process and data mediation, and integration. To enable processing of these
tasks in an automated manner, the SESA utilizes machine reasoning over formally
represented service specifications. We are developing an Integrated Rule Inference
System (IRIS) which is a scalable and extensible reasoner tool for WSML. The
system implements different deductive database algorithms and novel optimization
techniques.

Goals and Tasks

o Reasoning techniques with large data sets. In the context of the Semantic Web,
applications might require vast volumes of data to be processed in a short time.
Current reasoning algorithms are developed rather for small, closed, trustworthy,
consistent, and static domains. Therefore, these algorithms need to be extended
and adapted in order to be applied to large and dynamically changing knowledge
bases. One challenging approach to achieve a scalable reasoning is to combine
existing deductive and database techniques with methods for searching the Web
(utilizing semantic annotations). This line of research considers reasoning in dis-
tributed environments as well.

e New techniques for description logics reasoning. Description logics are a
family of knowledge-representation formalisms characterized by sound, com-
plete, and (empirically) tractable reasoning. However, applications in areas such
as e-science and the Semantic Web are already stretching the capabilities of ex-
isting description logics systems. Key issues here are the provision of efficient al-
gorithms that allow (advanced) applications (1) to scale up to knowledge bases of
practical relevance and (2) to leverage expressive languages for capturing domain
knowledge.

o Reasoning with integrating frameworks based on classical first-order logic
and nonmonotonic logic programming. Two lines of research will be explored:
— Reasoning with decidable fragments of such integrating frameworks.

— Reasoning with undecidable fragments using proof-theoretic techniques.

4.7.14 Storage and Communication

Storage and communication form the underlying mechanisms of the SESA needed
for coordination of the execution of middleware services within the platform. The
novel communication and coordination paradigm is called triple-space computing
(TSC). TSC is recently receiving attention in open distributed systems like the World
Wide Web and pervasive computing environments. TSC supports the Web’s disse-
mination idea of persistently publishing and reading. Furthermore, it is based on
the convergence of tuple-space technology (originating from Linda) and Semantic
Web (service) technology where RDF triples provide the natural link from tuple
spaces to triple spaces. Having machine-understandable semantics integrated in the
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middleware makes this approach particularly useful for SESAs. TSC can be used for
dynamic management of middleware services, coordination of middleware services,
resource management and external communication with SESA.

Goals and Tasks

e TSC establishment. Interaction interfaces, specification of security and trust
support, ontology-driven space management for the development of self-
adaptive, and reflective triple-space kernels for the integration of scalable se-
mantic clustering and distributed querying.

¢ Dynamic management of middleware services. Asynchronous coordination of
middleware services through local triple spaces, running middleware processes
over triple spaces.

e Resource management. A unified storage infrastructure with standardized ac-
cess policies and interfaces replacing dedicated repositories and hiding the com-
plexity of different types of resources. Thus, interfacing of triple-space kernels
with the resource management, installing RDF-based access to resources, and
management of distributed resources need to be developed.

o External communication with SESA based on TSC. SOAP-enabled Web ser-
vice execution over triple spaces, grounding of SOAP messages to TSC, lifting
of RDF-based messages to SOAP.

4.7.15 Execution Management

Execution management as the kernel of the SESA is responsible for the coordi-
nation of middleware services. It realizes the overall operational semantics of the
middleware which lets the system achieve the functional semantics of its client-side
interface. It orchestrates the functionality of the middleware services into a coherent
process in an orderly and consistent fashion. This process is defined by so -alled ex-
ecution semantics which defines how particular middleware services need to interact
so that SESA can provide particular functionality to its users. The research focuses
on the functional as well as the operational combination of the individuals services
of the middleware.

Goals and Tasks

o Definition and refinement of execution semantics. Definition of various exe-
cution semantics for particular execution scenarios.

e TSC Integration. Interkernel communication and coordination, distributed exe-
cution of tasks;. The communication between execution management and mid-
dleware services through publishing and subscribing to the data as sets of triples
over triple space. Other than the benefits of asynchronous communication, it will
achieve decoupling of individual middleware services.
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4.7.16 Security

In the context of SESA, security will cover many areas, including authenticating
access to services, preventing misuse of services, encryption, and data privacy. Se-
curity will be an important concern to ensure that services are accessed correctly,
by the authorized people, and that confidential or sensitive data is securely stored
and transmitted. There are currently many Web Services standards relating to secu-
rity, the most prominent being the recently completed WS-Security 1.1 specification
from OASIS.

4.8 Summary

This chapter outlined a comprehensive framework that integrates two complimen-
tary and revolutionary technical advances, SOAs and the Semantic Web, into a sin-
gle computing architecture that we call SESA. We presented an emerging SOC para-
digm and the implemental architecture SOA as the starting point. After analyzing the
advantages and shortcomings of SOA, we provided the Semantic Web Services exe-
cution environment challenges and requirements, all of which are involved with the
semantics extension on SOA. Based on those prerequisites, SESA is proposed as a
Semantic Web Services execution environment. While SOA is widely acknowledged
for its potential to revolutionize the world of computing, this success is dependent
on resolving two fundamental challenges that SOA does not address, namely, inte-
gration, and search or mediation. In a service-oriented world, millions of services
must be discovered and selected on the basis of requirements, then orchestrated and
adapted or integrated. SOA depends on but does not address either search or in-
tegration. Basically, we provide SESA grounding principles and global views with
various layers. More detailed component description and technical building blocks
are provided in the following chapters.
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SESA Middleware

This chapter provides a technical description for the middleware layer of the seman-
tically enabled service-oriented architecture (SESA), introduced in the last chapter,
following the view-centric guidelines of the [IEEE Recommended Practice for Archi-
tectural Descriptions of Software-Intensive Systems (IEEE 1471). We look in more
detail at the functionality required of each of the middleware services and suggest
technology-neutral interfaces for them. The chapter also includes a description of the
technology used to design and implement an open-source prototype for the SESA
middleware and provides the middle chapter of three describing the overall SESA
environment. The last chapter provided a high-level view of what is meant by SESA.
This chapter extends the technical description by providing a view of the processes
supported by SESA and how they are defined.

IEEE 1471 [89] recommends that software architecture descriptions be organized
into one or more constituents called architectural views. Each view is used to rep-
resent the concerns of a particular viewpoint of one or more stakeholders in the
architecture. In this context, stakeholders have an interest in, or concerns relative to,
the system. Concerns include system considerations such as performance, reliability,
scalability, security, etc.

A system stakeholder is defined as “an individual, team or organization (or
classes thereof) with interests in or concerns relative to a system.” The purpose of
describing a system architecture is to record the architecture in such a way that it
addresses the concerns and interest of these various perspectives. Identifying archi-
tecture stakeholders enables multiple different, sometimes overlapping, perspectives
to be taken into account. We identify the following stakeholders:

System designers (may wish to incorporate aspects of SESA into a system).

e A designer of a Semantic Web Services execution environment (like WSMX [95]
or IRS [153)).

e A developer of any of the services defined for the Semantic Execution Environ-
ment (SEE) middleware that enables SESA applications.

e Information modelers, including those responsible for WSMO descriptions of
goals, Web Services, ontologies, and/or mediators.
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e Clients of SESA-based systems, e.g., a client who has a goal that needs to be
fulfilled on the basis of a SESA.

Each set of stakeholders has various concerns with respect to the architecture from
their particular perspective, including:

What is the functionality of a SESA system?
What are the architectural properties associated with SESA? For example, ex-
tensability, evolvability, degree of coupling, provability of goal-Web service
matching, etc.
How do I interact with the system?

e Are there any constraints on how individual services should be designed and
implemented?
What kind of technology can be used to build a SESA?
What processes does SESA support and can these be configured?

This is just a sample of possible concerns and is by no means exhaustive. Each
view of the architecture is associated with at least one stakeholder and must reflect
the concerns of the stakeholder. IEEE 1471 defines views as “a representation of a
whole system from the perspective of a related set of concerns.” Viewpoints then
are described as a “pattern or template from which to develop individual views by
establishing the purposes and audience for a view and the techniques for its creation
and analysis.” In the previous chapter, we focused on a global view of what is meant
by SESA. This chapter looks at two additional views:

1. Services view: Functional descriptions and interfaces of the middleware and base
services.

2. Technology view: A look at the technology used in the design and implementa-
tion of the WSMX prototype for SESA.

The following chapter describes a view on the execution semantics for SESA, which
is the mechanism by which the processes SESA supports are described.

5.1 Services Viewpoint

Services are the basic building blocks of the SESA, meaning SESA itself uses
a Service-Oriented Architecture to provide the middleware for flexible service-
oriented applications. This leads to a somewhat fractal structure as SESA, with its
Service-Oriented Architecture, facilitates the construction of service-oriented appli-
cations. It means that the middleware services provided by SESA can themselves
be used by SESA to allow for changing data models, process strategies, implemen-
tations, or policy. Three logical layers within the SESA middleware services were
identified in Figure 4.2:

1. Broker services that directly enable a service requester to discover a provider
and mediate between potentially heterogeneous models.
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Figure 5.1. UML component diagram for middleware services

2. Base services used by the broker services for logical inferencing and reasoning
support, support for declarative ontological languages, and persistent storage.

3. Vertical services required across the board by the SESA middleware, including
security and trust.

Figure 5.1 illustrates a UML component model showing the interfaces that are
provided and required by the services in the broker and base layers. Interfaces are
represented as lines terminated with a circle (sometime referred to as lollypop sticks).
Where one service requires an interface provided by another, a line with a cup at the
end is drawn from the dependent service to the desired interface. An example is that
the data mediator service requires the reasoner interface.

In the following subsections we describe the three middleware service layers,
with one exception. Security is a major topic in its own right and we make the as-
sumption that SESA adopts the security mechanisms of the underlying technologies
on which it builds (Web service and message-based systems). We are most interested
in the broker and base services as they provide the novel aspects of the middleware.

5.1.1 Broker Services
Service Discovery

The discovery service is concerned with finding Web service descriptions that match
the goal specified by the service requester. A service requester provides the WSMO
description of a goal to be achieved (described in terms of a desired capability with
preconditions, assumptions, effects, and postconditions). This is matched against
WSMO descriptions of Web Services available to the discovery service. As the level
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Table 5.1. Discovery service interface

Aspect Detailed information

Description Provides access to the Semantic Web Service discovery mechanism of SESA
based on the conceptual model provided by WSMO.

Provided to  The core service has responsibility for managing the life cycle of instances of
execution semantics and it therefore may need to invoke the discovery service
(processes on SESA are executed as instances of execution semantics as de-
scribed in Chap. 6). Additionally, the orchestration engine service may also
need to make invocations to the discovery service.

Inputs A WSMO goal and, optionally, input data specified as instances of concepts
from one or more WSMO ontologies.
Outputs A list of unordered WSMO Web service descriptions.

of description between goals and Web Services will naturally vary and because it is
impractical for service descriptions to include all possible information on the ser-
vice they provide, we define service discovery to contain three distinct phases. Our
approach builds on that put forward in [114, 202]. Both suggest a two-phase discov-
ery approach, to which we add an additional phase, called data-fetch [213], where
information unavailable in the static service description may be fetched from the can-
didate services at discovery time. The interface provided by the discovery service is
described in Table 5.1.

Semantic Web Services discovery may be enriched through the addition of onto-
logically defined quality-of-service (QoS) attributes as described in [215]. The focus
here is on providing upper-level ontologies for describing various domains for QoS
attributes that may be relevant to service descriptions. Nonfunctional properties are
introduced to the Semantic Web Service descriptions whose values are defined in
these QoS ontologies. A suitable reasoner is able to compare required versus offered
QoS characteristics and return a list of matching services, ordered by criteria spec-
ified by the service requester. For example, an ontological definition for response
times may be shared by both the goal and the service descriptions and a goal may be
specified to include a requirement on response times along with a request to return
any matching service descriptions in descending order of how quickly they promise
to respond. The corresponding interface, QoSDiscovery, is described in Table 5.2.

Data Mediation

Every time data is exchanged as messages between services, the owners of each ser-
vice must be confident that they will be able to correctly interpret the data types
used in the messages and that all parties to the message exchange share a common
understanding of the meaning of those data types. This often turns out to be non-
trivial owing to the independent nature of service evolution even within a single
organization.

In the SESA, the data mediation service has the role of reconciling the data het-
erogeneity problems that can appear during discovery, composition, selection, or
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Table 5.2. Quality-of-service discovery service interface

Aspect Detailed information

Description  Provides access to the discovery mechanism extended to take account of
quality-of-service attributes and their respective values.

Provided to  As with the discovery interface in Table 5.1, QoSDiscovery may be called
by the core service as part of the execution of an instance of an execution
semantics.

Inputs A WSMO goal including quality-of-service attributes, optional input data spec-
ified as instances of one or more WSMO ontologies, and a WSMO defining a
model for ranking the list of discovered services.

Outputs A list of ordered WSMO Web service descriptions, ordered in the terms speci-
fied by the input ranking ontology.

Table 5.3. Data mediation interface

Aspect Detailed information

Description  Applies mapping rules between ontologes on instances of the source ontology
to create corresponding instances of the target ontology.

Provided to  Data mediation may be required during service discovery, orchestration, and as
an essential part of process mediation.

Inputs IRIs identifying the source and target ontologies and a set of instances of con-
cepts from the source ontology.
Outputs A set of instances of concepts from the target ontology corresponding to the

input source ontology instances. The relationship between the input and output
instances is exactly defined by the mapping rules.

invocation of Web Services. We propose that that this service use the interontology
mappings described in a declarative mapping language, such as that defined in [149].
This allows for scaling, as a single logical service can provide all data mediation
requirements, independent of the number of ontologies that must be supported. Nat-
urally, the run-time aspect of this service depends on the availability of the mappings.
We hold that the creation of these mappings requires the involvement of domain ex-
perts but their job is significantly aided by the availability of mapping tools such as
that provided in the Web Services Modeling Toolkit (WSMT).!

Two aspects of these mappings need to be taken into account in the design of
the data mediation service. The first is that the mappings need to be stored, implying
the data mediation service has a requirement for access to a persistent mappings
repository. The second is that the mappings are not tied to a formal language and
require grounding to such a language before they can be used. Once grounded, the
mappings can be used by a reasoner to provide instances of a target ontology on
provision of instances of the source ontology. This implies a dependency of the data
mediation service on the logical reasoner service. There is a single interface for the
data mediation service and this is shown in Table 5.3.

! http://sourceforge.net/projects/wsmt/
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Choreography Engine

In WSMO, choreography interface descriptions define both the messages that an
entity expects to send and receive, and the control flow between those messages.
Choreography interfaces belonging to Web Services are related to how the overall
capability of the service can be achieved, while those belonging to goals are related to
how the supplier of the goal wishes to get the capability being sought. For example,
a Web service selling IBM notebook computers may use the RosettaNet PIP3A4>
protocol to specify that it expects to send and receive the following messages in this
order:

Receive a purchase order message.

Send a purchase order acknowledgement message.

Send a purchase order conformation message.

Receive a purchase order conformation acknowledgement message.

This message exchange can be considered as a definition of a business process
to achieve a given capability. It does not care whether a service with that capability
is designed to implement all its functionality by itself or if it uses other services for
some of the steps. What the choreography interface is explicitly stating is that the
only way to obtain the service functionality is through the exchange of the specified
messages in the specified order. WSMO choreography interfaces are defined using
ontologized abstract state machines. In essence, each time a goal and a Web service
are determined to match each other an instance of each of their choreographies must
be created and the flow of messages through those choreography interfaces handled.
The choreography engine is responsible for this task.

As abstract machines state machines, choreography interfaces consist of a uni-
verse (the kinds of data available to the choreography) and a set of rules (conditional,
update, block-parallel) that operate on instances of data from the universe. The chore-
ography engine service for SESA has to be able to handle these descriptions where
the universe is represented by the state signature, in terms of WSMO ontologies,
and the rules are specified using logical expressions written in terms of the WSML
variant being used (WSML-Rule [54] is used for all the examples in this thesis).

The engine works as follows. Choreography interface instances for the goal and
Web service are created. Each has an associated knowledge base to which instances
of ontological concepts can be added. After each change to either knowledge base,
the conditions in the headers of the respective sets of rules are examined to see if any
of the rules fire. The firing of a rule may result in data being either sent to or from
the goal or Web service owning that choreography interface. The interface for the
choreography engine is described in Table 5.4.

Orchestration Engine

The WSMO model for Web Services recognizes that each Web service may achieve
its functionality through a composition of other Web Services. This is described as

2 http://www.rosettanet.org/
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Table 5.4. Choreography engine interface

Aspect Detailed information

Description  Allows registration and state-update operations. Registration involves telling
the engine to create an instance of a choreography interface (and associated
knowledge base) in its internal memory. This may be a new or a preexsit-
ing choreography interface. The latter is the case for long-running interactions
whose state should be stored in persistent storage and reloaded when new mes-
sages for that choreography instance arrive. Updating the state means providing
the instance of the choreography interface with data needed by the control flow
it specifies. Rules are run over the data provided and may result in the invoca-
tion of a service.

Provided to The choreography engine can be invoked directly after discovery if no data
or process mediation is required. Otherwise, it is expected that the mrocess
Mediation service creates the messages that this service receives.

Inputs A set of ontological instances corresponding to a subset of the concepts defined
in the state signature of the choreography.
Outputs No value is returned.

the orchestration of the Web service and resembles a process definition. Each step
in the orchestration can be represented as a WSMO goal or Web service description.
Describing a process in terms of goals (o be achieved at each step adds great flexibil-
ity as the binding of goals to services can be deferred to execution time and handled
by the execution environment.

Although it may seem counterintuitive to provide internal details of how a ser-
vice is composed in the service description itself, this can prove to be very useful
in environments where dynamic service composition is a requirement or where the
software process is stable but the providers of steps in the process may change. For
example, a Web portal for a telecoms broker may allow a customer to create a request
for a product bundle including broadband, landline, and provisioning for a Web site.
The broker has access to multiple service providers for each product and wants to
defer choosing the best set of providers for each bundle request until run time. The
customer request is written as a goal and matched against a Web service with an or-
chestration having three steps (one for each product being ordered) each represented
by a WSMO goal. Using goals means that the broker retains the flexibility of allow-
ing each goal to be bound to the most suitable service at run time when the service
is needed. This is in contrast to hard-wiring a business process to specific services
when the process is designed.

As with any other form of integration, each goal in a composition described by an
orchestration may have its own information model. This mirrors a common situation
in workflows where the data flow aspect can only be defined across heterogencous
data models through the use of data transformations. These data transformations are
often designed to work on the structure rather than the semantics of the data. We
have already described how the data mediation service enables data heterogeneity to
be overcome through mappings between ontological concepts. This more generic and
flexible approach can be applied to data flow between steps in a service orchestration.
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Table 5.5. Orchestration engine interface

Aspect Detailed information

Description  An instance of an orchestration must be registered to the engine before it can be
used. The registration operation creates an orchestration instance and its associ-
ated knowledge base. The ontologies used by the orchestration may be imported
to the knowledge base at this point or later, e.g., when the first message for the
orchestration arrives. A second operation of the interface called updateState is
required to allow new data be made available to the orchestration instance so
that its state can be updated.

Provided to  The orchestration engine is accessed by the core of SESA which executes the
abstract descriptions of the various supported execution semantics. We describe
the core in Sect. 5.1.2.

Inputs The initialization of the orchestration requires the identifier (IRI) of the Web
service description containing the orchestration.
Outputs The registration returns an identifier to the instance of the orchestration. The

updateState operation does not return any value.

Data mediation in this context can be explicitly or implicitly declared. Implicit means
that when the orchestration description is created, specific data mediation steps are
introduced into the orchestration description. Explicit means that the engine execut-
ing the orchestration description has sufficient information available to it, at run time,
to determine (1) if mediation is required and (2) if a mapping between the source and
target ontologies is available to be executed.

Assuming that suitable mappings exist between the two ontologies, it is possible
for the orchestration engine to find these mappings and apply them on-the-fly at run
time. This is because an orchestration is essentially a composition of choreographies,
where the output of the choreography of a goal (or service) at one step provides input
for the choreography of another step. Where a data mismatch occurs, the orchestra-
tion engine can examine respective choreographies to determine the ontologies used.
It can then identify if a set of conceptual mappings exist (see the “Data Mediation”
section) and apply the mappings to the instance of the concept to be transformed.

In practice, it may prove more effective for this work to be carried out when
the orchestration is being composed. That way, explicit calls to the data mediation
service can be incorporated into the orchestration description as required. Table 5.5
describes the required interface for the orcestration engine.

5.1.2 Base Services

The base services represent functional services fundamental to the infrastructure of
the SESA system. They are described in the following sections in terms of their
functionality and interfaces.

Core

The SESA essentially supports distribution as each part of its functionality is provi-
ded as a service that can be designed and implemented as part of a distributed system.



5.1 Services Viewpoint 107

However, the architecture is not designed as a pure peer-to-peer (P2P) network. There
is a need for a coordinating service (the core) that takes responsibility for providing
a messaging infrastructure and for managing administrative tasks such as the load-
ing of services and fault monitoring. Service loading can occur either through a de-
fined list when the core is started (bootstrapping) or on-the-fly (hot-deployment). It
is important to note that the only functional restriction on the location of services
with respect to the core is that they be uniquely identified using Web identifiers
and reachable through the chosen messaging implementation. For example, a shared
tuple space would mean that services could be located on any physical machine or
network that has access to that shared space.

The messaging infrastructure must be transparent to the other services in the
architecture. This maintains the property of strong decoupling of services from each
other and avoids restrictions on the designers of the implementation for the various
services. To achieve this transparency, the loading and hot-deployment of services
must take care of adding whatever deployment code is necessary to services. One
possible technique for this is the use of deployment configuration files and wrappers.
The core is responsible for handling three main functional requirements:

1. A framework for the management, including monitoring and starting and stop-
ping the system.

2. Facilitating the communication between services. Messages must be accepted
and routed to a suitable target service, enabling the communication between as
well as the coordination of services.

3. Support for the life cycle of execution semantics. Execution semantics specify
the process types that are available to run on the SESA. They enable the sep-
aration of the definition of what the architecture does from how it achieves it.
Multiple definitions of execution semantics are supported and multiple instances
of each execution semantics may run concurrently.

There are three interfaces for the core. These are ManageSystem, Messaging, and
ExecutionSemantics, shown in Tables 5.6, 5.7, and 5.8, respectively.

External Communications Manager

While the core provides the infrastructure for messaging between the various services
that make up the SESA middleware, there is also a need to interact with services and
entities that are external to SESA. This is the role of the external communications
manager (ECM) service. The service should be open to supporting as many transport
and messaging protocols as possible and this support should be transparent to SESA.

The link between the semantic description of a service and the concrete specifi-
cation of the service’s end points and operations (e.g., provided by WSDL.) is defined
by the grounding. When a service is to be invoked, the ECM service must be able to
manage any transformations necessary in terms of data representation and/or com-
munication protocols. For example, typically Web Services expect to receive SOAP
messages over HTTP with the SOAP payload represented in XML conforming to
a specified XML Schema definition. As the internal representation of data within
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Table 5.6. Core: ManageSystem interface

Aspect

Detailed information

Description

Provided to

Inputs

Outputs

In this design, the Core provides the microkernel for the SESA system. It must
be explicitly started and stopped, it must be possible to add and remove services
while the system is running, and it should be possible to extract information on
the health of the system as a whole.

The operations provided by this interface are aimed at system administrators
and would most likely be best presented through a graphical user interface dash
board type of application.

Starting takes no input. Stopping takes an identifier of the system. Monitoring
requires the system identifier and identifiers of one or more monitor types on
which information should be gathered.

Starting returns an identifier for the started system. Stopping and service man-
agement have no explict functional return information aside from possible con-
firmation messages. Monitoring returns information such as the health and
throughput of services and the system as a whole.

Table 5.7. Core: Messaging interface

Aspect

Detailed information

Description

Provided to

Inputs

Outputs

The core provides the functionality of a message bus accepting messages repre-
sented as events and routing each of them to a target service that has subscribed
to that event. The routing takes place in the context of a particular instance of
an execution semantics.

All services in the architecture participate in the messaging mechanism but this
should be transparent to them. The transparency should be made possible by
the addition of whatever additional code is necessary at the time the service is
deployed to the SESA system, using a service deployment descriptor (typically
an XML file). It is this additional code that interacts with the messaging system,
isolating it from the service. The service should only be invoked by its defined
interface.

Subscription requires the specification of an event type for the message and an
identifier for the service instance. Sending a message must specify the message
type and the instance of the execution semantics to which it belongs. Receiving
a message means that the core must be able to push a message to services
that have subscribed to that particular message type. (Another possibility that
does not require subscription is to use a pull method where services check the
core at regular intervals to see if any message of a suitable type is available.)
Either way, the target service must receive the message and the instance of the
execution semantics specifing the context in which it was sent.

In terms of the logical functionality, there is no explicit output.

SESA is in terms of WSMO, this must be lowered from a rich semantic language to
the structure syntax of XML.

Communication must naturally also be supported in the opposite direction, i.e.,
from a service requester to SESA. Continuing the last example of a Web service using
SOAP over HTTP with XML content, messages must be lifted to WSML before
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Table 5.8. Core: Execution Semantics interface

Aspect Detailed information

Description  Execution semantics is the name given to the process definitions that the SESA
can support. It separates the description of the process from its implementation.

Provided to  SESA provides an external interface that allows for a service requester to re-
quest that a goal be achieved or that a specific service be invoked. This interface
is attached to the communication manager service. Each such user request re-
sults in the creation of an instance of a suitable execution semantics to deal with
the request. Once an instance of an execution semantics exists, it is driven by
the receipt of events representing messages from specific services. For example
in the execution semantics description for the AchieveGoal process, once the
execution semantics receives an event indicating that the discovery service has
been completed successfully, it will raise an event for process mediation to take
place.

Inputs Creation of an instance of execution semantics requires the identifier of the
corresponding type. Updating an instance of an execution semantics requires its
identifier and an event indicating the outcome of some services functionality.

Outputs Starting an execution semantics returns an identifier. Receiving an event re-
quires the event identifier and the identifier for the instance of the execution
semantics (assuming that these identifiers point to the complete data in persis-
tent storage).

they can be further processed by the services making up SESA. Although, currently
very popular, the combination of SOAP, HTTP, and XML is not guaranteed to be
the only message, transport and data specifications used by external services. Many
other valid combinations are possible and where practical should be supported by the
ECM. There are two interfaces defined for the ECM service: Invoker, described in
Table 5.9, and Receiver, described in Table 5.10.

Parser

The information model for the content of all messages passed between the internal
services is defined by the WSMO metamodel. Consequently, the language used to
represent the content and define the semantics of these messages is WSML. However,
WSML in its native state is not easily consumable by the implementation of the
individual services. It is useful to be able to parse WSML into a form that is more
suitable for application programming. Such a form is provided by WSMO4]J [2], an
API and reference implementation for WSMO using Java.

WSMOA4] is a convenient programming abstraction for WSMO semantic descrip-
tions. However, it is not a prerequisite. Likewise the parser functionality is only re-
quired if the SESA design cannot natively work with WSML at the interfaces of each
component. For descriptive purposes and convenience, we make the assumption that
WSMOA4] is used in SESA for the remainder of this chapter.

When and where parsing takes place is a design and implementation issue. In
designs where the services are implemented in Java and hosted on a common Java
virtual machine (JVM), or on multiple JVMs that can exchange objects, it may make
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Table 5.9. External communications manager (ECM): Invoker interface

Aspect

Detailed information

Description

Provided to

Inputs

Outputs

The ECM Invoker handles all invocations from the SESA to external services.
It is responsible to carry out any necessary transformations and if security or
encryption is required, it should coordinate any associated tasks.

The choreography engine service is responsible for raising events that lead to
the Invoker interface being called.

The identifier of the service being invoked, the list of WSML instances to be
sent, and the identifier of the grounding that identifies exactly which operation
and end point for the invocation.

The invocation of a service is treated as asynchronous from the perspective of
the choreography engine raising the invocation event. In actual fact the wrap-
per attached to the ECM at deployment times shields the choreography engine
from needing to know about this. If the Web service invocation is synchronous,
then the wrapper should use an individual thread to wait until the Web service
response is returned and then raise a suitable event to be passed to the messag-
ing mechanism of the core. Where the Web service invocation is synchronous,
there is no return data immediately associated with the invocation. Rather the
service must make a subsequent callback to an end point on the SESA if it has
data to return.

Table 5.10. ECM: Receiver interface

Aspect

Detailed information

Description

Provided to
Inputs

Outputs

The ECM Receiver handles all incoming messages from external entities. There
are two categories of messages. The first are from SESA users who wish to run
one of the processes defined by the definitions of execution semantics provided
for SESA. These include service discovery, goal achievement, and specific Web
service invocation. We will look at these in Chap. 6. The second category is for
messages that are sent to SESA from a service as part of an already ongoing
conversation, e.g., the asynchronous response to a Web service operation men-
tioned in the description of the Invoker interface.

External entities using SESA for particular tasks.

When achieving a goal, the goal description or an IRI that resolves to the goal
description along with WSML instance data to act as input must be provided.
The inputs for executing a Web service are almost the same, with Web service
description required in place of the goal description. For discovery, the goal
identifier is needed along with optional ontological instance to restrict the set
of valid discovered services.

Achieving a goal may result in output WSML data being returned to the ex-
ternal requester. Likewise, the execution of a specific service. For discovery, a
possibly empty set of Web service descriptions is returned.

sense to parse WSML messages as soon as they arrive at the Receiver interface and
then use the internal WSMO4J model as the internal SESA representation. Where
services are designed as standalone Web Services, it may makes sense to exchange
messages between SESA services in WSML and allow each service to carry out
WSML parsing as they require. Table 5.11 describes the Parser interface.
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Table 5.11. Parser interface

Aspect Detailed information
Description  The Parser transforms WSML descriptions into the Java object model provided
by WSMO4]J.

Provided to  Accessible by any of the SESA services that wish to use WSMOA4]J as their
internal object model.

Inputs A WSML document.

Outputs A set of WSMOA4]J objects.

Table 5.12. Reasoner interface

Aspect Detailed information

Description The Reasoner enables queries that may require logical inferencing to be made
over a knowledge base defined by ontologies using a defined formal logic
model, e.g., description logic.

Provided to  Accessible by any of the SESA services but is required by discovery, data and
process mediation. It is also required by the algorithms defined in this chapter
for the choreography and orchestration engines.

Inputs One or more ontologies must be available to the reasoning engine to establish
its knowledge base. Queries to the engine take the form of logical expressions.
Outputs A possibly empty set of identifiers that provide an answer to each query put to

the Reasoner.

Reasoner

At the heart of the motivation for the SESA architecture is the flexibility enabled
by providing rich semantic descriptions of the entities involved in the use of Web
Services as a technology for application and system integration. To realize this flex-
ibility requires an engine that can understand the semantic descriptions, including
the axioms and relations defined for them, and be able to answer questions on the
knowledge those descriptions represent. This is the role of the reasoner service.

In particular, the discovery, data mediation and process mediation services rely
on the logical reasoning. For service discovery, the reasoner must determine if the
capability of a goal, expressed in terms of logical expressions, can be matched by
the capability of one or more Web Services, also expressed as logical expressions.
This requires a reasoning engine that answers queries on the basis of the underlying
formal logic model used by the semantic language. It is desirable that the reasoning
engine interface be provided either through Java, supporting WSMOA4], or as a Web
service that accepts and returns WSML expressions. The interface for the Reasoner
is described in Table 5.12.

Resource Manager

The resource manager service provides access to persistent storage for the SESA.
Persistence at the system level is required for all WSMO entities used during opera-
tion of the WSMX system as well as the non-WSMO entities, e.g., those representing
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Table 5.13. WSMO Repository interface

Aspect

Detailed information

Description

Provided to
Inputs

Outputs:

This provides retrieval, add, update, and remove (and possibly archive) opera-
tions on a repository of WSMO descriptions for Web Services, goals, ontolo-
gies, and mediators.

Accessible by any of the SESA services.

When adding or updating a WSMO element, a valid WSML description or cor-
responding set of WSMO4J Java objects is required. When removing a WSMO
element, the identifier(s) for the element(s) to be removed must be provided. In-
dividual WSMO elements can be retrieved by specifying their unique identifier,
while it should be possible to retrieve all WSMO descriptions of a particular
type, i.e., Web service or goal or mediator or ontology.

When adding, updating, or removing a WSMO element there is no specific out-
put beyond possible confirmation messages. When retrieving a WSMO element
a WSML document containing all the requested elements or a corresponding
set of WSMO4J objects should be returned.

Table 5.14. NonWSMO Repository interface

Aspect

Detailed information

Description

Provided to

Inputs
Outputs

There are many aspects of the operation of the SESA that require persistent
storage. One example is that instances the choreography engine service should
remain stateless, storing and retrieving instances of choreographies as required
based on unique identifiers for those instances. Another example is that the
architecture should keep track of the life cycle of events, representing messages
between services in the context of an instance of an execution semantics. This is
important for monitoring the health of the system and for maintaining historical
information for performance monitoring over time.

Accessible by any of the SESA services. Ideally, this service takes advantage of
an object-relational mapping framework like Hibernate that abstracts the details
of the persistence from the application developer.

Depends on the SESA service.

Also depends on the SESA service.

messages and their states used during the execution of processes provided by the
architecture (through execution semantics). Individual services are responsible for
any additional specific persistence required by their own design. There are two inter-
faces defined for the resource manager: WSMO Repository (Table 5.13) and Non-
WSMO Repository (Table 5.14).

5.2 Technology Viewpoint

In this section, we provide some details on the technology used in the design of
the core component of the Web Services Execution Environment® (WSMX), an

3 http://sourceforge net/projects/wsmx
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open-source prototype of the SESA. The purpose is to provide some insight into
the challenges of creating a software design that realizes the SESA.

5.2.1 Core Design

The core component takes the role of component coordinator for the architecture.
It manages the interaction between the other components through the exchange of
messages containing instances of WSMO concepts expressed in WSML and provides
the microkernel and messaging infrastructure for the architecture. The component is
responsible for handling the three main functional requirements:

1. A framework for the management and monitoring to start and stop the system
and allow its health to be monitored.

2. The core facilitates the communication between the components, it accepts mes-
sages and routes them to a suitable target component, enabling the communica-
tion between as well as the coordination of components.

3. Support for the life cycle of execution semantics (declarative definitions of the
allowed operational behavior of the architecture). Multiple definitions of execu-
tion semantics are supported and multiple instances of each execution semantics
may run concurrently.

The WSMX prototype for the core is realized as a microkernel utilizing Java
Management Extensions (JMX) and is described in detail in [98].

Management

In common with middleware and distributed computing systems, management of
components involved in the system becomes a critical issue. In the architecture we
make a clear separation between operational logic and management logic, treating
them as orthogonal concepts. Without the separation of these two aspects, it is in-
creasingly difficult to maintain the system and keep it flexible. The very process of
making management explicit captures an invariant that helps to leverage the support
for dynamic change of the rest of the system. Figure 5.2 presents an overview of the
infrastructure provides by the core to the components, which allows the management
and monitoring of the system.

The core is a management agent that offers several dedicated services, the most
essential of which is perhaps the bootstrap service, responsible for loading and con-
figuring the application components. The necessary information is obtained by a
combination of reflection and supplied information in the form of a distributed con-
figuration. The agent plays the role of a driver, in other words, it is built into the
application, as opposed to a daemon approach.

The core also employs self-management techniques such as scheduled opera-
tions, and allows administration through a representation-independent management
and monitoring interface that allows for a number of different management consoles,
serving different purposes. Text-terminal-, Web-browser-, and Eclipse-framework-
based consoles have been implemented.
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Figure 5.2. Component management in the architecture core

As is common with middleware and application servers, the core hosts a number
of subsystems that provide services to components and enable intercomponent com-
munication. Besides systems that are responsible for communication matters, pool
management takes care of handling several component instances, along with a num-
ber of the abovementioned subsystems. The core is in the unique position of offering
services to the individual components, such as logging services, transport services,
and life-cycle services. Presenting a coherent view of all management aspects of
components and, at the same time, not getting lost in complexity are two conflicting
goals and are subject to compromise.

One of the principles underlying the architecture design is support for distribu-
tion. The design of the core allows for transparent distribution of middleware services
in two ways. Firstly, the use of a shared virtual message space allows services to be
physically located on different servers. Secondly, it is possible for multiple WSMX
implementations to be configured as a federation of agents, where each agent is rep-
resented as a WSMX implementation. Where a middleware service is not available
at one site, the core at that location can send a message to another WSMX requesting
the middleware service at that remote site.
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Figure 5.3. Communication and coordination in the architecture core

Communication and Coordination

The architecture avoids hard-wired bindings between components — communication
is based on events. Whenever a middleware service is required an event represent-
ing a request for that service is created and published. Any services subscribed to
the event type can fetch and process the event. The event-based approach naturally
allows asynchronous communication. As illustrated in Fig. 5.3 event exchange is
conducted using a shared tuple space (originally demonstrated in Linda [84]), which
provides persistent shared space enabling interaction between parties without direct
event exchange between them.

The tuple space enables communication between distributed units running on re-
mote machines or on the local machine. It should be emphasized that the functional
components themselves (discovery, mediation, etc.) are completely unaware of this
distribution. That is, an additional layer provides them with a mechanism of com-
munication with other components that shields them from the actual mechanism of
transport which can be local or remote.

Through the infrastructure provided by the core, component implementations are
separated from communication issues. This infrastructure is made available to each
component implementation during instantiation of the component carried out by the
core during a bootstrap process. This is the process that occurs when a component is
identified and loaded by the WSMX prototype. Through the use of IMX and reflec-
tion technology, this can occur both at start-up as well as after the system is up and
running. In particular, the communication infrastructure carries the responsibility to
interact with the transport layer (a tuple space instance).

To enable one middleware service to request functionality of another, a proxy
mechanism is utilized. The calling service asks the WSMX core for a proxy to the
other middleware service it wishes to invoke. Once it has been provided, the proxy
can be used as if it were a direct interface to the required service. In fact, the proxy
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is implemented to publish an event with a type targeted at the required service and
returns any results to the calling service.

Each middleware service has associated configuration metadata which allows the
core to pick up that service and generate wrappers for it as it is deployed. Figure 5.4
shows a process represented by an execution semantics including the middleware
services and associated wrappers. The wrappers are generated and managed by the
core to separate middleware services from the transport layer for events. One wrapper
raises an event with some message content and another wrapper can at some point in
time consume this event and react to it.

Wrappers are generic software units that separate the implementation of WSMX
components from the communication mechanism. They provide methods to compo-
nents enabling communication with other components. Wrappers are automatically
generated and attached to each component during instantiation (this is carried out by
the WSMX kernel). There are two major parts:

1. Reviver. Its responsibility is to interact with the transport layer (i.e., the tuple
space). Through the transport layer, Reviver subscribes to a proper event-type
template. Similarly, Reviver publishes result events in the tuple space. This level
of abstraction reduces the changes required to code if the transport layer changes.

2. Proxy. To enable one component to request another’s functionality, a proxy is
utilized. The calling component specifies the required component’s name, the
method to be invoked, and the required parameters. The proxy creates the proper
event for this data and publishes it in the tuple space. A unique identifier is
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assigned to the outgoing event and is preserved in the response event. Proxies
subscribe to the response event by specifying a unique identifier in the event
template. It guaranties that only the proxy that published this event will receive
the result event.

Space-based messaging enables communication between distributed units run-
ning on remote machines. We emphasize that components themselves are completely
unaware of any distribution. The additional layer of wrappers provides them with a
mechanism to communicate with other components.

5.3 Summary

In this chapter we described the architecture for the SESA middleware. Two key sets
of middleware services were identified. Broker services provide functionality for
discovering, mediating, and invoking Semantic Web Services. Base services provide
infrastructural functionality that is used by the broker services.

In the second part of the chapter we looked in some detail at the technologi-
cal design for SESA that enables the various services to be managed and to evolve
independently of each other. We described an overview of the management of ser-
vices and the communication between them, including introducing the notions of
proxies and wrappers as used in the WSMX design of a SESA system.
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SESA Execution Semantics

The advent of service-orientated architecture (SOA) makes it more practical to
separate the definition of how a system operates from the implementation of the sys-
tem itself. We define execution semantics as formal descriptions of the operational
behavior of the system (analogous to business process descriptions in BPEL, but
at the system level). By separating the description of the system behavior from the
system’s implementation, we can achieve greater flexibility in how the implementa-
tions of the Semantically Enabled Service-Oriented Architectures can be used and
avoid the necessity to rebuild the system in the event of a new or changed require-
ment for how the system should operate. In terms of the behavior of the architecture,
we differentiate two types of services: middleware services and business services.
Middleware services provide the functional services required by SESA to operate.
Business services are exposed by information systems external to the SESA and the
role of the SESA platform is to coordinate interoperation between them. The execu-
tion semantics is defined in terms of the middleware services describing in a formal,
unambiguous way how the system built of loosely coupled middleware services op-
erates.

This chapter describes mandatory execution semantics which should be sup-
ported by SESA. We identify three fundamental scenarios that should be supported
and present them graphically using Unified Modeling Language (UML) activity
diagrams to allow their essence to be easily grasped. We do not constrain execution
semantics only to these mandatory scenarios provided in the subsequent sections. On
the contrary, we envision new, dynamically created execution semantics reflecting
changing business needs where middleware services can be composed in the flexi-
ble way according to the principles of SOA. We provide an example which shows
how execution semantics operating on middleware services can be used to solve
existing problems. We also look at the execution semantics from a WSMX technical
perspective.



120 6 SESA Execution Semantics

6.1 Motivation

Specification of system behavior can be viewed as control and data flow between
system components (services in SOA), where the actual actions take place. System
designers tend to create architectures for specific, current needs, which often results
in rigid system behavior difficult to adapt to the changing requirements. The SESA
takes a quite different approach, where the middleware services that makes up the
system building blocks are well defined and ready (o be utilized in various scenarios
(all of which may not be known at design time). For instance, one execution se-
mantics may specify goal-based discovery of Semantic Web Services, while another
may define Semantic Web Service invocation. Both execution semantics are defined
explicitly using the same middleware services but with different data flows and con-
trols. Middleware services cooperate with each other on the interface level but they
do not refer to each other’s implementation directly.

A software design process should result in a design that is both an adequate re-
sponse to the user’s requirements and an unambiguous model for the developers who
will build the actual software. A design therefore serves two purposes: both to guide
the builder in the work of building the system and to certify that what will be built
will satisty the user’s requirements. We define execution semantics, or operational
semantics, as the formal definition of system behavior in terms of computational
steps. As such, it describes in a formal, unambiguous language how the system oper-
ates. Since in a concurrent and distributed environment the meaning of the system, to
the outside world, consists of its interactive behavior, this formal definition is called
execution semantics.

The major advantages of specifying system behavior by execution semantics over
informal methods are the following:

e Foundations for model testing. It is highly desirable to perform simulation of
the model before the actual system is created and enacted. It allows one to detect
anomalies like deadlock, livelock, or tasks that are never reached. However, as
pointed out by Dijkstra [60], model simulation allows pointing out the presence
of errors, but not the lack of them. Nevertheless, it is paramount to detect at least
some system malfunctions during the design time instead of during the run time.
Therefore, the semantics of utilized notations has to be perfectly sound in order
to create tools enabling simulation of created models. Only formal, mathematical
foundations can meet these requirements.

e Executable representation. Similarly like in the case of model testing, using
formal methods provides a sound foundation to build an engine able to execute
created models. Such an engine would not necessarily need to be able to detect
livelock or other model faults. This distinguishes this advantage from the previ-
ous one.

e Improved model understanding among humans. Soundness of the utilized
method significantly improves or even rules out ambiguities in model under-
standing by humans.
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Several methods exist to model software behavior. Some of them model system
behavior in a general way like UML diagrams; others impose more formal require-
ments on the model, for instance, Petri net-based methods, process algebra, modal
and temporal logics, and type theory. These methods have different characteristics:
some are more expressive than others; some are more suited for a certain problem do-
main than others. Some methods provide graphical notation like UML or Petri nets;
some are based on syntactic terms like process calculi and logics; some methods have
tool support for modeling, verification, simulation, or automatic code generation and
others do not.

We impose two major requirements on the methodology utilized for modeling
most fundamental SESA behavior. Firstly, it has to use understandable and straight-
forward graphical notation; secondly, it has to be unambiguous. These two require-
ments are met by UML activity diagrams, which are familiar to the engineering
community and whose execution semantics can be disambiguated, for instance, in
the semantics specified by Eshuis [66].

6.2 Proposed Description Formalism

UML 2.0 is a widely accepted and applied graphical notation in software mod-
eling. It comprises of a set of diagrams for system design capturing two major
aspects, namely, static and dynamic system properties. Static aspects specify sys-
tem structure, its entities (objects or components), and dependencies between them.
These structural and relational aspects are modeled by diagrams like class diagrams,
component diagrams, and deployment diagrams. Dynamic aspects of the system are
constituted by control and data flow within the entities, specified as sequence dia-
grams, state machine diagrams, and activity diagrams. Originally UML was created
for modeling aspects of object-oriented programming (OOP). However, it has to be
emphasized that UML is not only restricted to usage in the OOP area, but is also
applied in other ficlds like, for instance, business process modeling.

The primary goal of UML diagrams is to enable common comprehension of the
structure and behavior of modeled software among the involved parties (e.g., design-
ers, developers, other stakeholders). To the detriment of UML notation, this informa-
tion is conveyed in an informal way that may lead to ambiguities in certain cases as
pointed out in [96]. Since we want to model the behavior of SESA in a widely used
and understood manner, UML is a natural choice.

UML activity diagrams depict a coordinated set of activities that capture the be-
havior of a modeled system. They are used to specify control and data flow between
the entities providing language constructs that enable one to model elaborate cases
like parallel execution of entities or flow synchronization. For the SESA, they are
used to identify the middleware services used in each specific execution semantics
along with the control and data flow between them.

In each of the activity diagrams provided in this chapter, the actions that provide
steps in the execution semantics are identified inside a dashed-line box. The middle-
ware services, for discovery, mediation, selection, etc., are drawn as UML activities
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with interfaces that accept inputs and provide output as data objects. These interfaces
are consistent with the defined SESA middleware services. In each of the activity di-
agrams provided, rounded rectangles with small square input pins denote actions.
The pins represent input and output data ports. Rounded rectangles with large rec-
tangular boxes at their boundaries (e.g., communication manager in Fig. 6.1) indicate
activities that correspond to SESA middleware services. The rectangular boxes at the
boundaries represent parameters that the activity accepts as input or provides as out-
put. Data flow directional arrows can be identified as those beginning or ending at
a data pin or a parameter box. The actions inside the dashed-line boundary are the
responsibility of the execution semantics. Control flow directional arrows have no
associated data and go from action to action inside the execution semantics. Finally,
the vertical thick black bars are data-flow branches. Data flowing into a branch is
made available at all outgoing flows. Where multiple input pins are available on an
action, the action does not commence until data has arrived at each of those pins.
Data becomes available on all outgoing pins of an action, as soon as that action is
completed.

Owing to the wide proliferation of UML notation, several efforts were carried
out to make concrete its semantics, especially regarding the dynamic aspects of
UML notation. The semantics for UML activity diagrams, in the context of work-
flow modeling, was specified in [66]. UML activity diagrams fulfill our requirements;
therefore, they are used as the graphical notation in this chapter, consistently with the
semantics given by Eshuis, to specify the operational behavior of SESA.

6.3 Mandatory Execution Semantics

We define three fundamental execution semantics identified for the SESA and
describe the details of each in the following subsections. The SESA defines a set
of middleware services that are required to achieve the functionality of a Seman-
tic Web Services execution environment. Interfaces are defined for each middleware
service, defined in terms of the conceptual model provided by WSMO. The com-
bination of all interfaces provides the basis for the SESA application programming
interface (API). Section 6.3.1 describes the scenario where goal-based service dis-
covery without service invocation is desired. Section 6.3.2 is an extension of the
scenario described in Sect. 6.3.1 — both service discovery and service invocation are
required. The client’s goal and all data instances the client wishes to send to the po-
tential provided service are specified together as input. In Sect. 6.3.3, the situation
described relates to where a client already knows the service that is to be invoked
and the data required for this invocation is available.

In each of the subsequent sections, the execution semantics are linked to de-
fined entry points to the SESA. Entry points can be considered as input ports, to
which messages can be sent, for initiating specific execution semantics. The follow-
ing notation is used (similar to the convention used by the JavaDoc documentation
system), where execSemName stands for the name of the entry point to the system
for the execution semantics, input data types are the types of the input parameters
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required to start the execution semantics, and return data type is the data type re-
turned if the execution semantics completes successfully:

execSemName (Input data types): Return data type

We do not show the Parser component in the following sections since we treat it
as a transformation component whose only role is to perform the transformation and
validation from the textual form of WSML to object-oriented representation which
can be more easily utilized by other SESA components.

6.3.1 Goal-Based Web Service Discovery

The following entry point initiates this system behavior:
getWebServices(WSMLDocument): Web Services

A service requester wishing to discover a list of Semantic Web Services fulfilling
its requirements provides its requirements as a goal description using WSML. A set
of WSML Web service descriptions whose capability matches the goal is returned.

Figure 6.1 shows the activity diagram. A message containing a WSML goal is
received and passed to the communication manager, which takes care of whatever
message persistence may be required. The goal is sent to the discovery activity, which
looks for WSMO Web service descriptions with capabilities that match that of the
goal. The discovery activity may need data mediation as part of its internal design but
this internal aspect of that activity is not modeled as part of this execution semantics.
Discovery continues until a set of matching Web Services is compiled. Assuming this
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Figure 6.1. Goal-based service discovery
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set is nonempty, the selection activity determines which of the discovered services
to return to the service requester. The WSMO description of the selected service
must be transformed to WSML and packaged into a message that can be sent back
to the requester. The communication manager takes care of this activity, ending the
execution semantics for goal-based discovery.

6.3.2 Web Service Invocation

The following entry point initiates this system behavior:
invokeWebService(WSMLDocument, Context): Context

Where the service requester already knows which Semantic Web Service is re-
quired to be invoked, the execution semantics illustrated in Fig. 6.2 is used. The
first input signal provides the WSML content, while the second provides a conversa-
tion context. If this is the first message being sent to the Web service, there will be
no existing conversation and this context signal will be empty. As in the other two
scenarios, the WSML input message is unpacked by the communication manager
activity. In this case, however, the WSML input contains both the target Web service
description and the input instance data.

After the WSML input has been received, the WSMO Web service description
and the instance data are passed to the data mediation activity to handle any data map-
ping that may be required (may require a WSML reasoner to be invoked internally).

After that, process mediation has all input data at its input pins and can com-
mence. We do not describe the internal design of the process mediation activity here
but we do note that it is responsible for matching the message exchange patterns
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Figure 6.2. Web service invocation
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required by the goal and offered by the Semantic Web Service description. This
matching includes both the message patterns and the data types used by the respec-
tive messages. Process mediation determines how the input data instances need to
be organized so that they can be understood by the Web service choreography de-
scription. The output of process mediation is WSMO data instances organized in this
manner.

Once output from process mediation is available, the choreography activity has
all required input and (most likely using a reasoning engine as part of its internal
design) determines which messages need to be sent out on the basis of the choreog-
raphy description (an abstract state machine) of the Web service. This WSMO data
must be transformed into a format defined by the Web service grounding information
(taken from the WSDL service binding) and sent to the Web service end point. This
activity is carried out by the communication manager.

6.3.3 Goal-Based Service Execution

The following entry point initiates this system behavior:
achieveGoal(WSMLDocument): Context

A service requester wishing to use SESA for all aspects of goal-based service in-
vocation (discovery, mediation, invocation) provides both the goal and the input data
descriptions in a single WSML document. A unique identifier for the conversation
initiated by the receipt of the goal is returned by the execution semantics to the ser-
vice requester. In parallel the goal and the WSML instance input data are processed
by the execution semantics to discover and invoke a service whose capability matches
that described by the goal description.

This scenario illustrated in the UML activity diagram in Fig. 6.3 is based on
the assumption that the service requestor is able to provide, up-front, all input data
required by the discovered Web service.

The execution semantics is initiated by the receipt of the goal and input data
messages. As in Fig. 6.1, the communication manager activity is used to unpack the
WSML content of the messages. Then the discovery execution semantics commences
as described in Sect. 6.3.1, after which the selection takes place, and the resulting
Semantic Web Service is sent to the Web service invocation execution semantics
activity as presented in Sect. 6.3.2.
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Note that this execution semantics, without the discovery and selection activities,
could be used to handle messages returned from the Web service to be sent back to
the service requester, assuming that the service requester provided an invocable end
point at which it could receive such messages.

6.4 Case Study Example of SESA Execution Semantics

In this section we provide an example case study which shows how SESA and its
execution semantics can be utilized to solve existing problems. We present here a
case study from the DIP EU Integrated Research Project' on Semantic Web Ser-
vices. Figure 6.4 shows a simplified architecture for an eBanking prototype for a
stockbroking application. To remain competitive in their markets, banks require the
means to be adaptive to the changing needs of their clients. The hard-wired nature
of many distributed computing systems makes it difficult to provide this flexibility
at the business-to-customer (B2C) interface of the bank. The stockbroking scenario
allows bank clients to specify their request, in their own language, at the bank’s Web
portal. This request is analyzed by the WSML goal adapter, which attempts to match
it with a WSML goal from a predefined goal repository. The goal is dispatched to the
SESA middleware, which carries out reasoner-based discovery, quality of service
based selection, mediation, choreography, (possibly orchestration, if the goal con-
sists of multiple subgoals), and invocation. Assuming a suitable service is identified,
it is invoked and the result returned via the SESA middleware and transformed into
a presentation format using the WSML adapter.

Figure 6.5 shows a UML sequence diagram of calls to SESA components used by
the eBanking prototype for the scenario of buying stock when a certain recommen-
dation is received. The business rules to buy stock (or not) are implemented by the
WSML adapter. In this sequence diagram, the eBanking adapter has responsibility
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Figure 6.4. eBanking case study overview
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Figure 6.5. Sequence diagram for eBanking case study scenario

for managing part of the business process in addition to transformation to and from
WSML. This is a specific implementation required for this case study containing
additional business logic that organizationally is separate to the adapter functionality
but is included in the implementation for practical reasons.

6.4.1 1 - Sending Request

A Web page front end allows bank clients to enter that they wish to purchase a certain
stock if the expert recommendation is “buy.” The adapter transforms the natural lan-
guage request into a WSML goal using the repository of predefined goals as a guide.
The inputs for the goal are provided by the client’s inputs on the Web page and the
information gathered from a call to a stock adviser, which returns a stockRecommen-
dation. For space reasons, we do not show the calls to get the recommendation but
assume that this is achieved through goal-based invocation. The inputs, for buying
stock, are lifted to WSML by the adapter using XSLT, a fragment of which is shown
in Listing 6.1 With the WSML goal available, the adapter invokes the achieveGoal()
entry point of the SESA using the SOAP document-style message protocol. In return,
a context is received containing the identification of the conversation as well as an
identification of the role of the sender (i.e., requester or provider). This information
is used in subsequent asynchronous calls from the requester.
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Listing 6.1. Lifting in XSLT and resulting WSML message

W =

10

/* Lifting rules from XML message to WSML */
<xsl:template match="STOCK” >
< [CDATA[instance ]]> <xsl:apply—templates select="CODIGO_ISIN"/> < |[CDATA[ memberOf
smi#Stock]] >
< [CDATA[isPartOfcompany hasValue "]]> <xsl:apply—templates select="NOMBRE_VALOR"
/> <|[CDATA["]|>
<[CDATA[hasISIN hasValue "]]> < xsl:apply—templates select="CODIGO-ISIN” /> <!|[CDATA
>
< |[CDATA[hasStockMarket hasValue "]]> < xsl:apply—templates select="COD_MERCADOQO”
/> <|[CDATA["]|>
< [CDATA[hasCurrency hasValue "]]> <xsl:apply—templates select="DIV_COTIZACION”
/> <|[CDATA["]|>
< |[CDATA[hasDate hasValue "]]> <xsl:apply—templates select="
FECHA_COTIZACION_-COMP_ACCIONES" /> < [CDATA["]] >
< |[CDATA[hasTime hasValue "]]> <xsl:apply—templates select="
HORA_COTIZACION_-COMP_ACCIONES"/> < |[CDATA["]]>
< [CDATA[hasMaximum hasValue "]]> <xsl:apply—templates select="MAX_SESION” /> <[
CDATAl']I>
< [CDATA[hasMinimum hasValue "]]> <xsl:apply—templates select="MIN_SESION" /> <[
CDATAl']I>
< |[CDATA[hasOpeningPrice hasValue "]]> < xsl:apply—templates select="
PRECIO.APERTURA"/> < |[CDATA["]] >
< [CDATA[hasPreviousPrice hasValue "]]> < xsl:apply—templates select="
PRECIO.ANTERIOR"/> < [CDATA["]] >
< [CDATA[hasLastPrice hasValue "]]> < xsl:apply—templates select="PRECIO_ULTIMO”
/> <|[CDATA["]|>
< [CDATA[hasValueChange hasValue "]]> <xsl:apply—templates select="
DIF_CIERRE_ANTERIOR"/> <![CDATA["]]>
< |[CDATA[hasVariation hasValue "]]> <xsl:apply—templates select="
TPC_CIERRE.ANTERIOR"/> < [CDATA["]]>
< [CDATA[hasVolume hasValue "]]> <xsl:apply—templates select="VOLUMEN”" /> < |[CDATA
rn>
</xsl:template >

<xsl:template match="NOMBRE_VALOR” >
<xsl:variable name="buffer” select="." />
<xsl:value—of select ="normalize —space ($buffer)” />
</xsl:template >

/ message in WSML after transformation */

instance ES0113679338 memberOf Stock
isPartOfcompany hasValue "BANKINTER”
haslISIN hasValue "ES0113679338"
hasStockMarket hasValue "055”
hasCurrency hasValue "EUR”
hasDate hasValue ™
hasTime hasValue
hasMaximum hasValue "53.3”
hasMinimum hasValue "53.1”
hasOpeningPrice hasValue "53.3"
hasPreviousPrice hasValue "53.4”
hasLastPrice hasValue "53.2”
hasValueChange hasValue "—0.2”
hasVariation hasValue ™
hasVolume hasValue "114618”
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6.4.2 2 - Discovery and Conversation Setup

The achieveGoal entry point is implemented by the communication manager — the
middleware service, which facilitates the inbound and outbound communication with
the SESA middleware. After receipt of the goal, the communication manager ini-
tiates the execution semantics which manages the whole integration process. The
communication manager sends the WSML goal to the instance of the execution se-
mantics, which in turn invokes the parser, returning the goal parsed into an internal
system object.

The next step is to invoke the discovery middleware service in order to match
the requested capability of the goal with the capabilities of services registered in the
repository. Services matching the requested capability are returned to the execution
semantics. For space reasons, we show a simplified discovery without selection. For
the purposes of the diagram, we assume that exactly one service is discovered that
matches the goal capability.

Once a service is discovered, the execution semantics registers both the re-
quester’s as well as the provider’s choreography with the choreography engine (these
choreographies are part of the goal and service descriptions, respectively). Both
choreographies are set to a state where they wait for incoming messages that could
fire a transition rule. This completes the conversation setup.

6.4.3 3 - Conversation with Requester

The instance data for the goal is sent from the BankInter adapter to WSMX asyn-
chronously by invoking the receiveData entry point. Along with the instance data,
the context is also sent to WSMX in order to identify the sender and the conversation
(the context has been previously obtained as a result of invocation of the achieveGoal
entry point).

The data in WSML (WSMLmsg) is passed through the communication manager
to the execution semantics, which again first parses the data into internal system ob-
jects using the parser. In general, multiple independent conversations can be running
inside WSMX; thus, information carried by the context is used to identify the specific
conversation to which the message belongs. The execution semantics then passes the
data obtained to the process mediator.

The first task of the process mediator is to decide which data will be added to
which choreography, i.e., requester’s or provider’s choreography.? This decision is
based on analysis of both choreographies and concepts used by these choreogra-
phies and is described in detail in [45]. In our scenario, the process mediator first
updates the memory of the requester’s choreography with the information that the

2 Note that the choreographies of WSMO services are modeled as abstract state machines
[186] and are processed following the semantics of abstract state machines. Each choreog-
raphy has its own memory containing instance data of ontological concepts. A choreogra-
phy rule (ASM rule) whose antecedent matches available data in the memory is selected
from the rule base and by execution of the rule’s consequent, the memory is modified (data
in the memory is updated, deleted, or removed).
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purchase order request has been sent. The process mediator then evaluates how that
data should be added to the memory of the provider’s choreography. In the use case,
data mediation must be first performed to the ontology used by the provider (service
ontology). For this purpose, the source ontology of the requester, the target ontology
of the provider, and the instance data are passed to the data mediator. Data mediation
is performed by execution of mapping rules between both ontologies (these mapping
rules are stored within WSMX and have been created and registered during the in-
tegration setup phase). More information on the design and implementation of the
data mediator can be found in [25]. Once mediation is complete, the mediated data
is added to the provider’s choreography.

6.4.4 4 - Conversation with Provider (Buying Stock)

Once the requester’s and provider’s choreographies have been updated, the choreog-
raphy engine processes each to evaluate if any transition rules have been fired. In our
scenario, the requester’s choreography remains in the waiting state as no rule can be
evaluated at this stage.

For the provider’s choreography, the choreography engine finds the rule shown
in Listing 6.2 (lines 14-21). Here, the choreography engine matches the data in the
memory with the the antecedent of the rule and performs the action of the rule’s
consequent (i.e., update/delete of the memory). The rule says that the message buy-
Stock with data, stockld, volume, should be sent to the service provider (this data
had been previously added to the choreography memory after the mediation. The
choreography engine then waits for the buyStockResponse message to be sent as a
response from the provider. Sending the message to the service provider is carried
out by choreography engine passing the message to the communication manager,
which, according to the grounding defined in the choreography, further passes the
message to the purchaseOrderConfirmation entry point of the BankInter adapter.

Listing 6.2 shows the fragment of the provider’s choreography and the selected
rule described above. The choreography is described from the service point of view;
thus, the rule says that the service expects to receive the buyStock message and send
the reply buyStockResponse message. In the StateSignature section (lines 3—11), con-
cepts for the input, output, and controlled vocabulary are defined. Input concepts cor-
respond to messages sent to the service, the output concept corresponds to messages
sent out of the service, and controlled concepts are used for controlling the states,
and the transition between states during processing of the choreography. Each con-
cept used is prefixed with the namespace definition (¢.g., bank, casm) corresponding
to the imported ontologies (lines 4, 5). The choreography is part of the service de-
finition, which in addition also contains definition of nonfunctional properties and
capability. For brevity, these elements are not included in the listing.

In the adapter, lowering the WSML message to XML is performed using trans-
formation rules from the BanklInter ontology to the corresponding XML schema used
by the Web front end.
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Listing 6.2. Provider’s service choreography

choreography BuyStockChoreography
stateSignature _"http :// www.example.org/ontologies/BuyStockW S#statesignature”
importsOntology {-"http://www.example.org/ontologies/DIP/Bank”,
_"http :// www.example.org/ontologies/choreographyOnto” }

R T I S I R

in bank#buyStock withGrounding { -"https://www.theBank.com/wsBrokerService/
Servicel.asmx?WSDL#wsdl.interfaceMessageReference(BrokerServiceSoap/
performBuySell/in0”}

9 out bank#buyStockResponse

11 controlled ControlState

13 transitionRules _"http :// www.example.org/ontologies/buyStock#transitionRules”

14 forall {?controlstate, ?request} with (

15 ?controlstate [oasm#value hasValue oasm#lnitialState] memberOf
oasmiControlState and

16 ?request memberOf bank#buyStockRequest

17 ) do

18 add(?controlstate[oasmivalue hasValue oasm#BuyingStock])

19 delete( ?controlstate [oasm#value hasValue oasm#lnitialState])

20 add(-# memberOf bank#buyStockResponse)

21 endForall

After that, the actual service for buying the stock is invoked, passing the parame-
ters of the stockID and volume. The service executes and sends its results in XML
to the adapter. As before, the XML data is lifted to the bank ontology, passed to the
WSMX, parsed by the parser, and after the evaluation of the process mediator, the
data is added to the provider’s and requester’s choreography memory, respectively.
Once the choreographies have been updated, the reasoning engine is used to check
if any transition rules can fire as a consequence of the new information. In this case,
there is only one further message to be sent. This is a confirmation message for the
service requester that the stock purchase has been completed.

After the message has been sent, no additional rules can be evaluated from the
requester’s choreography; thus, the choreography gets to the end of conversation
state. Since both the requester’s and the provider’s choreography are in the state of
end of conversation, the choreography engine notifies the execution semantics and
the conversation is closed.

6.5 Technical Perspective on Execution Semantics

In this section, we provide some details on the technology used for enabling ex-
ecution semantics operating on the middleware services (components) in WSMX,
which is a reference implementation of SESA. The purpose is to show how exe-
cution semantics can be run on such a system and to give an insight into existing
challenges.
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Figure 6.6. Execution semantics in the architecture core

Execution semantics are declarative descriptions of the processes that make up
the allowed operation of the SESA system. Figure 6.6 indicates that the definition
provided by the execution semantics is used by the WSMX core microkernel to
drive the scheduling and sequencing of calls to the middleware services. The core
infrastructure provides the engine that enforces the general computation strategy by
running the execution semantics, operating with both the transport mechanism and
the middleware service interfaces. It keeps track of the current state of execution and
may preserve data obtained during execution for use at a later stage.

Execution semantics enables the composition of loosely coupled WSMX middle-
ware services and provides a necessary execution logic (e.g., conditional branching,
fault handling). As depicted in Fig. 6.7 an instance of execution semantics is part of
each event published in a tuple space (publish/subscribe transport mechanism used
by WSMX). Execution semantics has a state that changes over time while travel-
ing and executing across distributed component locations. Additional data obtained
during execution can be preserved in the instance of execution semantics.

There are two approaches to an execution semantics representation in WSMX,
namely, expressing execution semantics as a Java code and as a workflow model.
Execution semantics specified in Java can be carried out in the current version
of WSMX. The latter approach represents the future vision of WSMX execution
semantics embedded in a distributed workflow model.

Java-based execution semantics is represented by a state-aware piece of code
that is executed while being fetched by a Wrapper. The execution path is repre-
sented similarly as in abstract state machines and the current state is encoded in an
execution instance. When execution semantics is executed, component implemen-
tation represented by Wrapper is exploited and additional steps can be conducted.
According to the result returned from the component, the next step can be taken.
The next event type is passed on to Wrapper and the state of the execution seman-
tics instance is changed. Additionally, some data can be stored for further processing
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Figure 6.7. Distributed execution semantics in WSMX

in an instance of execution semantics. Finally the updated event is published in a
tuple space. Although the different parts of the execution semantics are executed on
different distributed components, the execution semantics can be specified centrally.

Workflow-based execution semantics is envisioned as a next step in develop-
ing WSMX component composition and coordination. The general rules are similar
to thh case of Java code representation. The workflow approach possesses certain
advantages over Java representation, but there also are some challenges. Among the
advantages of the workflow approach is its graphic representation, capability to per-
form prior model correctness checking, flexible response to changes, and on-the-fly
execution of the created model. Models created for of WSMX components should
not be affected by the WSMX tuple space communication paradigm and the capa-
bility to use all available expressions (patterns) for the chosen workflow language
should be preserved. A crucial aspect is to provide an instance synchronization
mechanism for executed models. It is especially relevant in cases of parallel exe-
cution where a race condition might occur; thus, it is necessary to ensure the validity
of the context when executing tasks in a component. Before a task is finalized one
needs to check whether context relevant for the task has changed. If the context has
changed (i.e., input data and variables required for task execution), tasks must be
executed again. It needs to be stressed that all aspects related to distributed workflow
execution have to be considered in this case.
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6.6 Summary

We have identified and described three mandatory execution semantics for loosely
coupled SESA middleware services. Execution semantics can be seen as an or-
chestration of the middleware services that make up the SESA. Defined execution
semantics support crucial scenarios and can be utilized as a starting point for the fur-
ther refinements and enhancements of the SESA behavior with respect to the chang-
ing business requirements of business services between which SESA is applied. Ad-
ditionally we took a close look at an example case study where SESA execution
semantics is run and provided a technical perspective based on WSMX, which is a
reference implementation of SESA.
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Reasoning

This chapter tackles the often abused and underdefined term “reasoning.” Since
reasoning is so frequently ambiguously referred to, at least within the semantic tech-
nologies community, there are several sections in this chapter that cover the topic
from different perspectives. First, from a conceptual perspective, highlighting the
fact that reasoning lies at the heart of Semantically Enabled Service-oriented Archi-
tectures (SESAs), and proving the necessity of an efficient reasoner within SESA
in the abstract examination of what must be present in order to draw conclusions
of any sort, i.e., a knowledge base (e.g., the Web), and a way to form judgments or
draw conclusions based on some sort of logical process (e.g., a reasoner) (Sect. 7.1).
Section 7.2 provides a brief background on two well-known logical formalisms,
namely, description logics and logic programming. Subsequently we focus on cur-
rent reasoning tasks in these two formalisms, as well as their benefits and drawbacks.
Moreover Sect. 7.3 highlights the WSML variants and their specific requirements
for reasoning engines. Section 7.4 focuses on reasoning within SESA by outlining
which components require which reasoning functionalities. A generic framework
for reasoning with WSML, namely, WSML2Reasoner, is introduced in Sect. 7.5.
Section 7.6 focuses on an additional layer to the standard reasoner architecture, a
Rule Interchange Format (RIF) layer, which aims to specify a common format for
rules in order to allow rule interchange between diverse rule systems. The develop-
ment of this format (or language), which shares a common agenda with the W3C RIF
Working Group, will conclusively provide an interlingua into which rule languages
can be mapped, allowing rules written in different languages to be executed in the
same reasoner engine. Finally Sect. 7.7 discusses future research and concludes by
returning to the conceptual perspective and highlighting the importance of reasoning
within SESAs.

7.1 Reasoning Requirements

The SESAs necessitate effective reasoning for the successful completion of different
tasks, such as discovery, choreography, or mediation. The reasoning functionality
itself is not used directly in a goal-based invocation of services, but is part of the
underlying base layer in the global view of SESA, as described in Chap. 4.
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Deductive reasoning describes the task of deriving new knowledge from a given
set of statements or a knowledge base. It exploits the information about the world,
or some part of the world (the so-called domain of discourse), which is captured by
the knowledge base in order to infer properties of entities in the domain that are not
explicitly specified in the knowledge base.

A classic and comprehensive example from deductive reasoning is the famous
syllogism originating from Greek philosophers:

All humans are mortal (premise 1).
Socrates is a human (premise 2).
Socrates is mortal (conclusion).

This syllogism is a valid inference in traditional logic in which one proposition
(the conclusion) follows out of two others (the premises). Whether this is a valid
inference does not depend though on the truth of the premises or the conclusion, but
only on the form of the inference. If the two premises are true, then the conclusion
must be true too. But it is also a valid inference if a premise and the conclusion are
false (e.g., by replacing “mortal” in the above example by “immortal”).

Clearly, reasoning depends on the concrete language that is used in order to de-
scribe and formalize the domain of discourse. By providing a fixed set of modeling
primitives, the chosen formal language especially has a huge impact on how the
domain of discourse can be described and what details can be captured (expressive-
ness) as well as how difficult it is to derive new knowledge from the knowledge base
(in other words to find proofs for statements in the language, or the computational
complexity of the reasoning tasks). We will briefly introduce two common logical
formalisms in Sect. 7.2, namely, description logics and logic programming.

Reasoning with Semantic Web Services

The goal of Semantic Web Services is the fruitful combination of Semantic Web
technology and Web Services. By using ontologies as the semantic data model for
Web service technologies, Web Services have machine-processable annotations just
as static data on the Web. But all efforts in semantic annotation (specification or de-
scription) of Web Services are far from being actually effective as long as there is
no way for computerized agents (instead of human beings) to actually process this
kind of information about the services. Only then, the dynamic composition of soft-
ware systems could be achieved. Thus, the development of high-quality techniques
for automated discovery, composition, and execution of services, i.e., processing,
empowered by logical inference, of semantically enhanced information is crucial for
the success of Semantic Web Services.

In this context, “processing” means to apply the formalized knowledge intelli-
gently to solve a given problem, i.e., to actually exploit the semantics of the given
description. In one way or the other, this boils down to performing simple inference
steps over existing knowledge until enough knowledge has been generated to solve
the task.
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Thus, agents need support for reasoning about Semantic Web Service descrip-
tions in order to effectively utilize semantic annotations. Efficient reasoning about
Semantic Web Services will significantly simplify time-consuming and tedious tasks
for humans in the context of Semantic Web Services and the dynamic construction
of Web-service-based systems.

Ontologies and Semantic Web Service Descriptions

As we mentioned above, reasoning exploits the information about a specific domain
of discourse. In the scope of Semantic Web Services, this domains of discourse are
Web Services as well as the world they are embedded and used in, e.g., business
interactions between customers and providers and the respective business area, like
the tourism domain. We are, e.g., interested in a property that states that the func-
tionality provided by a specific service can help to achieve a particular well-defined
client goal, like the booking of tickets for a specific game during the soccer world
championship in a specific year.

Domains of discourse are generally formalized by means of ontologies.
Ontologies are a popular knowledge representation formalism in computer sci-
ence and became one of the main fundamental building blocks of the Semantic Web
and Semantic Web applications. Following the interpretation of ontologies among
philosophers, in computer science an ontology is understood as a “formal, explicit
specification of a shared conceptualization of a problem domain” [90]. It provides
a formal vocabulary for denoting the elements of interest in the problem domain at
hand, e.g., in the area of tourism these could be the elements person, smoker, non-
smoker, accomodation, hotel, pension, youth hostel, transportation means, flight,
train, etc., as well as their characteristic properties, e.g., attributes like age, name,
and ranking, as well as relations between these elements, e.g., is accomodated in
between person and accomodation. Whereas concepts denote sets of objects in a
problem domain (which are somehow similar), it is often very useful to collect
known instances of such concepts (or classes) in an ontology as well. Hence, one
can additionally describe a set of instances for concepts that are known or existing
in the problem domain along with their properties. Finally, one might want to reflect
certain constraints or laws that hold between the described elements from the ontol-
ogy within the problem domain. Such constraints are captured by so-called axioms,
i.e., logical statements that restrict the interpretation of the various elements in the
ontology in the intended way. An example of such an axiom could be that there is no
object which simultaneously belongs to the concepts male and female.

As such, ontologies can be seen as problem-oriented knowledge bases that have
a close relation to databases: in general, one can distinguish between an instance
(or data) level and a schema level in an ontology. The vocabulary of the ontology
(concepts, relations, attributes) and the axioms represent the schema of the problem
domain, whereas the instances constitute data which populates the schema. Hence,
ontologies can be seen as rich, semantic data models.
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Thus, queries against ontologies (meaning the respective knowledge bases)
to find individuals with specific properties are very relevant for Semantic Web
applications. Hence, query answering is a very important reasoning task here (for
more details on query answering please refer to Sect. 7.3).

Independent of the concrete formalism used for the specification of a Semantic
Web Service, such descriptions necessarily need to be based on shared conceptual
model of a problem domain, since otherwise providers and requesters of Web Ser-
vices will not be able to understand each other. Ontologies perfectly fulfill this need
and provide a shared and explicit conceptualization of a problem domain along with
the (shared) vocabulary which allows one to talk about the problem domain. Because
of this intimate relation of Semantic Web Service descriptions to ontologies, query
answering over ontologies is an essential reasoning task in the context of Semantic
Web Services and their descriptions as well.

Web Service Modeling Language

WSML is a family of formal languages that allows one to capture various aspects of
Web Services. Fundamentally, WSML provides a particular ontology language. All
other descriptions, such as Web service functionalities, are based on ontologies as
an underlying conceptual and formal data model. In the context of WSML, ontology
reasoning is thus the most fundamental form of reasoning that is required to realize
higher-level tasks such as Web service discovery or composition of Web Services.
In particular, the provision of a variety of different service modeling languages with
different expressivity and computational properties is an appealing property which
actually makes WSML suitable for all practical applications.

7.2 Logical Background

Logics, which can be traced back to the ancient Greeks, are the foundation of knowl-
edge representation. Thus, they serve as a natural starting point in the design of
knowledge-based systems: A logic defines a formal language for expressing knowl-
edge about some domain and statements to be derived from this knowledge (and thus
fixes the set of modeling primitives that can be used in describing the world), it pre-
cisely defines the formal semantics of each statement in the corresponding language,
and, last but not least, it is equipped with a calculus, i.e., a formal (computable) pro-
cedure for proving new facts (described in the corresponding language) from a given
set of statements in the language.

We will concentrate in the rest of this chapter on two well-known logical for-
malisms which were identified in Chap. 3 as those formalisms on which WSML is
based, namely, description logics and logic programming. They can both be used
for ontology descriptions, knowledge representations, and Semantic Web Service
descriptions; they have been thoroughly investigated and provide efficient reasoning
implementations.
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7.2.1 Description Logics

Description logics are a subset of first-order logic and constitute a family of logic-
based knowledge representation formalisms. They evolved from semantic networks
and frame systems, which were nonlogical approaches, based on the use of graphical
interfaces, also called network-based structures. Description logics differ from those
systems in that they provide a precise semantic characterization of the modeling
language.

Description logics have become a cornerstone of the Semantic Web for its use in
the design of ontologies. They are based on concepts (classes) and roles. Concepts
are designated by unary predicate symbols and represent classes of objects sharing
some common characteristics. Roles are designated by binary predicate symbols and
are interpreted as relations between objects. The latter can also be defined as at-
tributes attached to objects. The language is compositional, i.e., concept descriptions
are built by combining different subexpressions using constructors.

The Description Logics Family

Description logics form a family of different logics, distinguished by the set of con-
structors they provide. Usually each constructor is associated with a different capital
letter. For example, SHOZ Q describes the basic description logic (enabling the use
of the conjunction M, the disjunction LJ, the negation —, the existential quantifier 3,
and the universal quantifier V) extended with transitive roles (S), inverse roles (7 ),
role hierarchies (), nominals (O), and qualified number restrictions (Q). Detailed
information about description logics in general, and about the most known exten-
sions, can be found in [10].

Description Logics Knowledge Base

Within a knowledge base, there is a clear distinction between intensional knowledge
(general knowledge about the problem domain) and extensional knowledge (specific
to a particular problem). Analogously, the description logics knowledge base is sep-
arated into two components, a TBox and an ABox.

TBox

A TBox contains the terminological knowledge of a knowledge base. The basic form
of declarations in a TBox are concept definitions, where new concepts are defined
in terms of previously defined concepts. Such a concept definition describes general
properties of a concept.

Two sorts of axioms describe the structure of a domain in a TBox:

1. Definition axioms introduce macros/names for concepts. The left-hand side
of a definition can only be an atomic concept name. Example: Woman =
Human M Female, denoting that a woman is equivalent to the intersection of
human and female.
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2. (General) inclusion axioms (general concept inclusion, GCI) assert subsump-
tion relations. Both sides of the definition can be complex concept expressions.
An example is JhasChild. Female = 3hasChild. Human, denoting that the con-
cept of having at least one female child is a subconcept of having at least one
human child.

Most of the early description logics systems did not allow TBoxes to contain ter-
minological cycles. But as recursive definitions are very common in modeling appli-
cation domains, modern systems all provide unrestricted support for cyclic concept
definitions.

The basic task in constructing a terminology is classification, which amounts to
placing a new concept expression in the proper place in a taxonomic hierarchy of
concepts (see Sect. 7.3.1).

ABox

The ABox contains assertional knowledge (knowledge about the individuals of a do-
main). Individuals are introduced and the ABox asserts their properties using concept
definitions.

Two sorts of axioms describe concrete situations in an ABox:

1. Concept assertions. For example, Mary : (Woman M 3hasChild. Female),
denoting that Mary is a woman and has at least one female child.

2. Role assertions. For example, < Mary, Jack > : hasChild, denoting that Jack
is the child of Mary.

When the description logic used is extended with nominals, ABox assertions can
also be described as TBox concept subsumptions: a : C'is equivalent to {a} C C.

Unique Name Assumption

Description logics often adopt the unique name assumption, which means that dif-
ferent names always denote different individuals.

Open World Assumption

Description logics knowledge bases adopt an open world semantics. The open world
assumption entails that the given information can be incomplete. Thus, what we can-
not prove must not necessarily be false. Analogously a closed world assumption
would entrain that the information from a knowledge base is regarded as complete.
This means that everything that cannot be proven from the available information is
regarded as false.

For example, given a knowledge base that contains the axioms Jack : Man, Bob :
Man, and < Jack, Bob > : hasChild, the query “Are all of Jack’s children male?”
results in “yes,” if the knowledge base adopts a closed world semantics, and results
in “unknown” under an open world semantics, as there is no information available
that tells us if Bob is the only child of Jack. So we do not know whether there is some
more information missing about Jack and possible other children.
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7.2.2 Logic Programming

Logic Programming is a declarative programming paradigm that is based on the Horn
subset of first-order logic. A logic program consists of simple “if ... then ...” rules,
which form a simple way of knowledge representation. A rule is formed from a head
and a body:

H:-B,.., B,

The head of the rule consists of one positive literal (e.g., H), whereas the body of
the rule consists of a number of literals (e.g., By, ..., B, ). There exist two different
notations for such rules, both being semantically equal: H :- By, ..., B,, is sometimes
written as H < 1 A ... A B,,. Such arule can be read as if < body > then < head >.
Literals are atoms and can be either positive, as, e.g., p(x), or negative, as, e.g., not
p(z). An atom without variables is a ground atom. Such a ground atom, i.e., a rule
without a body, as, e.g., p(ai,...,a,), is called a fact. A rule without a head is a
query: ?- By, ..., By,.

Examples are:
Rule: hasDaughter(z, y) :- hasChild(z, y), female(y).
Rule: hasGrandfather(z, z) :- hasParent(z, y), hasFather(y, z).
Rule: fernale(x) :- not male(x).
Fact: person(jack).
Fact: female(mary).
Query: ?- hasGrandfather(jack, x).
Query: ?- hasDaughter(jack, mary).

Negation-as-Failure

The use of negation-as-failure in logic programming is an extension of Horn logic
and allows one to derive not p from the failure to derive p: Whenever a fact is not
entailed by the knowledge base, its negation is entailed. Negation-as-failure is closely
related to the closed world assumption that concludes that what is not known to be
true is false.

For example, given a logic program that contains the fact hasChild(Jack, Bob),
the query “Is Peter a child of Jack?” results in “no,” if a knowledge base adopts a
closed world semantics, i.e., we can conclude not hasChild(Jack, Peter), as the
fact hasChild(Jack, Peter) is not entailed by the logic program. Under an open
world assumption it would result in “unknown,” as there is no information available
that tells us if Bob is the only child of Jack. The rule female(z) :- not male(z),
e.g., that uses negation-as-failure, states that a given x that is not known to be male
is female.

Through the use of negation-as-failure, logic programs become nonmonotonic.
Most classical logics are monotonic, i.e., adding rules or facts to a knowledge base
only allows us to derive new knowledge from them; no derivations done earlier
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are lost. But adding rules or facts to a nonmonotonic program may result in a re-
duction of known derivations. Staying with the example above, this means that we
may need to retract the conclusion not hasChild(Jack, Peter), as soon as the fact
hasChild(Jack, Peter) is added to the logic program.

Prolog

Prolog (programming in logic) is a logical programming language based on
first-order predicate calculus, originally restricted to only allow Horn clauses (i.c., a
disjunction of literals with the property that at most one literal is positive). It was,
however, extended to include negation-as-failure. As described for logic program-
ming in general above, a Prolog program is built of rules and facts.

The execution of a Prolog program is an application of theorem proving by first-
order resolution. It is initiated by the posting of a query, as, e.g., ?- hasChild(z, y),
which would result in an enumeration of all possible answers. Prolog is not declar-
ative in the sense that the order of rules in the program matters for the program
evaluation.

Datalog

Datalog is a subset of Prolog, which in contrast to the latter does not allow function
symbols and unsafe rules (i.e., variables in Datalog are limited in that each variable
that occurs in a rule must occur in a positive body literal which does not correspond
to a built-in predicate). Furthermore Datalog programs must be stratified with regard
to the use of negation and recursion. In contrast to Prolog, the ordering of clauses is
usually irrelevant in Prolog.

According to [53], WSML-Core is based on plain (function- and negation-free)
Datalog, WSML-Flight is semantically equivalent to Datalog extended with inequal-
ity and (locally) stratified negation, and WSML.-Rule is defined through a mapping to
full logic programming (i.e., with function symbols and unsafe rules) with inequality
and unstratified negation.

7.3 Reasoning Tasks

Traditionally, reasoning refers to inferring new statements (so-called conclusions)
from a set of given ones (the assumptions) which have the property that they are
true (or they hold) whenever the assumptions are true. Formally, reasoning refers
to checking a specific semantic relationship between statements in a formal logic:
the logical entailment relation. Logics usually are equipped with a system of (com-
putable) rules which allow one to derive conclusions from a set of assumptions. Such
a system is called a proof calculus. In general, when designing a proof calculus for
a specific logic, one is interested in a system which faithfully captures the semantic
relationship logical entailment, i.e., the system should be sound and complete. De-
pending on the expressivity of the language for defining statements about a problem
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domain, this system can be infeasible or even untractable. The latter can very easily
be the case. Checking logical entailment for first-order logic, for instance, is a prob-
lem which is undecidable.

However (and despite the fact that it is considered as standard reasoning task),
checking for logical entailment is not the only reasoning task of interest for applica-
tions. More generally, one might be interested in deriving all conclusions of a given
set of statements in an effective way.

Similarly, one might be interested in efficiently finding all objects known in the
domain model which have specific properties, for instance, all adults who have an
ancestor who smoked and died of lung cancer. This task is usually called query an-
swering and is very important in the area of information and database systems as
well as for Semantic Web applications in general.

In the case of description logics — less expressive but usually tractable knowl-
edge representation systems — the most common reasoning tasks to be supported are
subsumption checking and satisfiability checking. The first task is concerned with
formally proving that a given concept description is more specific than a given other
one and can be seen as a special form of logical entailment check. The second task
is concerned with determining whether a given knowledge base is satisfiable, i.e.,
does not contain any contradictive statements. Often reasoning tasks can be reduced
to other reasoning tasks, for instance, logical entailment in many logics can be ex-
pressed in terms of satisfiability checking. However, the possibility of doing such
translations does not necessarily lead to systems that efficiently deal with certain
reasoning tasks. Sometimes, very different techniques are needed and used to effi-
ciently address different reasoning tasks.

In summary, a reasoning system in general is built to support a specific reasoning
task in an efficient way. The applications that need reasoning support essentially
define the kind of reasoning tasks that the reasoner needs to deal with. If different
reasoning tasks need to be supported, a reasoning infrastructure needs to implement
different reasoners. Finally, the language used to model a problem domain constrains
and determines the techniques which can be used for implementing a reasoning task.

7.3.1 Description Logics

In description logics, there are different basic reasoning tasks for reasoning with
TBoxes or ABoxes. As described in [10], the main inference procedures with TBoxes
are concept subsumption and concept satisfiability. With ABoxes, the main reasoning
tasks are ABox consistency and instance checking. These different reasoning tasks
are not independent; often one of them can be reduced to another.

The OWL community focuses on entailment and query answering as the key
inference services. Entailment can be reduced to satisfiability, while query answering
amounts to computing the result of a query over a database or an ABox, respectively.
This is based on working with a database-style conjunctive query language.

For the main description logics reasoning tasks mentioned above, there
often exist both sound and complete algorithms given a knowledge base. A sound
proof procedure for entailment proves only entailed sentences, whereas a complete
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proof procedure for entailment can prove every entailed sentence. In the usage of
knowledge-based systems, it is often necessary to have a guarantee that the infer-
encing algorithms are sound and complete. Most state-of-the-art reasoners today are
based on tableaux-calculi techniques.

Reasoning algorithms are not only evaluated by their effectiveness but also by
their complexity. Baader et al. [10] talk about the tradeoff between the expressiveness
of arepresentation language and the computational complexity. The more expressive
the language is, the harder the reasoning over it is.

More detailed information about reasoning tasks and algorithms in expressive
description logics and about the reasoning complexity can be found in [10].

The following sections deal with the main reasoning tasks, as described above,
and offer a quick overview of some of the main nonstandard inference problems.

Knowledge Base Consistency

Checking knowledge base consistency is about ensuring that an ontology does not
contain any contradictory facts. It is checked if a given ABox A and TBox 7 have a
common nonempty model.

Concept Subsumption

Subsumption is usually written as C' = D. Determining subsumption is about check-
ing whether the subsumer concept D is more general than the subsumee concept C.
This means that C' must denote a subset of the set denoted by D.

Example: Mother C Woman.

Two other relationships between concepts are equivalence and disjointness. Both
of them can be reduced to subsumption:

e (' and D are equivalent < C'is subsumed by D and D is subsumed by C.
e (' and D are disjoint < C' 1M D is subsumed by L.

Subsumption is also used to compute a subsumption hierarchy (taxonomy) of all
named concepts. This helps for classification, which means to place a new concept
expression in the proper place in a taxonomic hierarchy of concepts. Classification
is a basic task in constructing a terminology.

Concept Satisfiability

Concept satisfiability is the problem of checking whether there exists a model of the
knowledge base in which C' is interpreted as nonempty (has an individual).

Description logics semantics are defined by an interpretation Z = (A%, 7). AT is
the domain of the interpretation (a nonempty set) and - is the interpretation function.
The latter assigns meaning to nonlogical symbols: it maps concept names into sub-
sets of the domain, role names into subsets of the Cartesian product of the domain,
and individual names into elements of the domain.
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So a concept C is satisfiable if and only if there exists an interpretation Z such
that OF = (). T is then called a model of C.

Satisfiability can be reduced to subsumption: C'is unsatisfiable < C'is subsumed
by L. In the case of description logics with negation support, subsumption can be
reduced to satisfiability by C'is subsumed by D < C 1 =D is unsatisfiable.

For example, Mother T Woman < Mother 11 —~Woman is unsatisfiable.

ABox Consistency

ABox consistency is the problem of checking whether there is a nonempty model
for A. In general, it is checked with respect to a TBox (see the “Knowledge Base
Consistency” section above)

Instance Checking

Instance checking verifies whether a given individual is an instance of a specified
concept. Other reasoning services can be defined in terms of instance checking, e.g.,
knowledge base consistency (see the “Knowledge Base Consistency” section above),
realization (see the “Most Specific Concept and Realization” section later), and re-
trieval (see the “Retrieval” section later). They are described in the following section
about nonstandard inference problems.

Instance checking itself can be reduced to ABox consistency.

Nonstandard Inference Problems

All description logics systems provide the standard inference services described
above. According to [10], it has turned out, however, that these services are not suf-
ficient for optimally building and maintaining large description logics knowledge
bases.

Nonstandard reasoning tasks can support the building and maintenance of
knowledge bases, as well as the retrieval of information about the knowledge in
them. Hereafter some more prominent nonstandard inference problems are briefly
described.

Least Common Subsumer

The least common subsumer (LCS) of two concepts C' and D is the minimal concept
that subsumes both of them and is thus a concept describing the commonalities of C'
and D.

E is the LCS of C' and D if:

1. CLFEFand DL E.
2. Forevery F with C C Fand D C F, wehave I C F.
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Most Specific Concept and Realization

The most specific concept (MSC) is the least concept description that an individ-
ual is an instance of, given the assertions in the knowledge base. The problem of
determining the MSC of a given individual is called realization.

C' is the MSC of an individual a in an ABox A if:

. AE=a:C.
2. Foreach D with A |=a : D, we have C' C D.

Retrieval
Retrieval is about retrieving all instances of a given concept.
Unification of Concept Terms

Unification of concept terms extends, according to [12], the equivalence problem by
allowing one to replace certain concept names by concept terms before testing for
equivalence. This is necessary, because often testing for equivalence is not sufficient
to find out whether, for a given concept term, there already exists another concept
term in the knowledge base describing the same notion.

Although the following concept terms are not equivalent, they represent the same
concept:

o Woman MVchild. Woman.
e Female M Human MV child.(Female M Human).

The two terms can be made equivalent by replacing the atomic concept Woman
by the concept term Female 1 Human. So those two terms obviously unify.

Matching of Concepts

Matching of concepts with variables is a special case of unification. It was initially
meant to help to discard unimportant aspects of large concepts in knowledge bases.

Given a concept description D, containing variables, and a concept description
C, without variables, the matching problem asks for a substitution o (of the variables
by concept descriptions) such that C' C o (D). More detailed information about the
concept matching problem can be found in [9].

Concept Rewriting

The idea of rewriting is, given a concept expression, to find a concept which is related
to the given concept according to equivalence, subsumption, or some other relation.
This can be used to reformulate concepts during maintenance of a knowledge base
or to translate concepts from one knowledge base to another.

According to [11], the problem of rewriting a concept can be described as fol-
lows: Given a set of concept definitions (TBox) 7 and a concept description C' that
does not contain concept names defined in 7, can this description be rewritten into a
related description £ by using some of the names defined in 77?
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Absorption

Absorption is a rewriting optimization that tries to eliminate GCI axioms (see the
“Description Logics Knowledge Base” section above) [208].

Explanation

We use explanations all the time in our daily life to justify our opinions and decisions.
Depending on the context in which they are used, those explanations can have many
different forms.

While a description logics reasoner can be used to derive inferences from or
detect contradictions in an ontology, most users have difficulties in understanding
inferences and/or fixing errors in an ontology. This is because most reasoners only
report inferences (or errors) in the ontology without explaining how or why they are
derived.

So an approach to explanation in knowledge-based systems is the following: The
user asks why a conclusion has been reached and gets presented with the reasoning
trace of the system [200]. This helps the user in understanding how the system works,
to be confident in the system’s output, and to eventually debug an ontology.

7.3.2 Logic Programming

As already stated in Sect. 7.2.2, logic programming is a declarative programming
paradigm. It is the appropriate calculus to execute query answering, as there are
well-known techniques for query answering in the area of logic programming and
deductive databases [209]. Datalog programs can be evaluated by techniques such
as, e.g., naive cvaluation, seminaive evaluation, seminaive evaluation with magic
sets, query—subquery evaluation [4], or dynamic filtering [122].

Query Answering

The main reasoning task in logic programming is query answering, i.e., the compu-
tation of all ground substitutions of free variables in a query such that the ground
version of the query under any of these substitutions is logically entailed by an
ontology (or more generally a knowledge base). Posing a query to a Prolog or a Dat-
alog program yields a set of tuples that instantiate the vector of variables in the query.

Examples:
Ground query “Is Jack the father of Peter?”: ?- father(jack, peter).
Nonground query “Who are the siblings of Bob?”: ?- sibling(bob, ).

Nonground queries can be reduced to ground queries, by replacing the variables
with possible instatiations. For example, ?- sibling(bob, z). can be replaced by ?-
sibling(bob, peter)., etc.. Thus, query answering can be reduced to checking entail-
ment of ground facts and therefore also to satisfiability checking.



150 7 Reasoning
Ground Entailment

Entailment means, given some formula A, to check if no constraint in an ontology O
is violated and if in all models I of the constraint-free projection of O (i.e., the ontol-
ogy which can be derived from O by removing all constraining description elements,
such as attribute type constraints, cardinality constraints, integrity constraints, etc.)
it holds that all ground instances of A in O are satisfied.

Such entailment of ground facts is equivalent to answering ground queries.

Ontology Consistency

Consistency checking means checking whether an ontology O is satisfiable. More
precisely, it is about checking if no constraint in O is violated and if the constraint-
free projection of O has a model /.

The task is executed by querying for the empty clause. If the resulting set is
empty, the empty clause could not be derived from the logic program and the ontol-
ogy is satisfiable, otherwise it is not.

Instance Retrieval

When the task of instance retrieval is executed on a given ontology O and with a
query with free variables, we expect a resulting set that contains all tuples for which
an instantiation of the query expression is entailed by O.

As for ground entailment, the instance retrieval task can be performed by posing
ground queries to the Datalog program (as nonground queries can be reduced to
ground queries).

Query Containment

Query containment is about checking whether the results of one query are contained
in the results of another query [136]. Query containment can be tested by differ-
ent approaches, such as, e.g., containment mapping or the “frozen facts” algorithm,
presented in [180].

7.3.3 Benefits and Drawbacks

Both approaches, description logics reasoning and logic programming reasoning,
have benefits and drawbacks, owing to the characteristics of the underlying log-
ical paradigm.

Description Logic Reasoning

Description logics are logics which have been specifically designed for describing
terminologies and relations between the elements of the terminology like concepts
and relations. Thus, an important application domain of description logics is the
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formalization and reasoning over ontologies. Particular emphasis is usually put on
decidability of common reasoning tasks like subsumption checking between con-
cepts/relations or satisfiability checking of concepts. Thus, they have very limited
expressive power and in particular are not able to describe general properties in-
volving variables since there is no such modeling primitive available in description
logics.

Furthermore, it is well known that reasoning over (large) sets of instances (the
so-called ABox) cannot be done efficiently by pure description logics systems. But
description logics reasoning over individuals is an important aspect of the vision be-
hind the Semantic Web and it is crucial in applications of ontologies in areas such as,
e.g., Web service discovery. This also poses new challenges for ontological reason-
ing. Firstly, applications might now require vast volumes of individuals exceeding
the capabilities of existing reasoners. Secondly, while one can assume that changes
in the terminological part of an ontology are relatively infrequent, various scenarios,
such as Web service discovery, postulate dynamic, frequent, and, possibly, concur-
rent modification of the information related to the individuals in ontologies.

In order to overcome the problem of efficient ABox reasoning for description
logic reasoners a well-known idea in knowledge representation, namely, supporting
reasoning by means of databases, can be applied. Assertions over individuals are
stored in a database, together with information inferred using a description logic
reasoner over the position in the ontological taxonomy of their corresponding de-
scriptions. This allows one to reduce the amount of reasoning to pure terminological
reasoning.

Concluding, reasoning on Web service descriptions that is purely based on de-
scription logic reasoning ensures the scalability of the approach and of available
reasoning systems, owing to the guarantee of the computational tractability of de-
scription logics. But, on the other hand, the restricted expressiveness of descrip-
tion logics constrains modeling and comprehension of service descriptions: the
description-logic-based service description languages and reasoning systems a priori
have strictly limited capabilities. In principle, this is one possible approach but it is
widely recognized as insufficient for many real-world applications, among which in
our specific domain are semantic descriptions of Web Services.

Logic Programming Reasoning

Logic programming allows the specification of constraints and rules and is in that
more expressive than description logics. This enables the creation of and reasoning
over more complex and expressive real-world applications, such as, e.g., Semantic
Web Service descriptions.

Logic programming query engines provide efficient query answering, and this
also over large datasets, i.e., including large sets of instances. As already mentioned,
this is crucial for applications of ontologies in areas such as the Semantic Web or
Web service discovery.
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Logic programming reasoners are not meant to be used as subsumption reason-
ers. Still, as shown in [88], subsumption reasoning can be reduced to query answer-
ing for the subset of description logics that intersects logic programming, named
description logic programs (DLP).

As for description logic reasoners, reasoning with logic programming engines
can be optimized by the use of a database for the storage of facts, or even for query
evaluation.

7.3.4 Reasoning Tasks and WSML Variants

In this section we provide a short description of each of the WSML variants (except
for WSML-Full, as the semantics of WSML-Full is at this point in time still an
open research issue), as well as the specific requirements that each variant has on a
reasoner.

WSML-Core

WSML-Core is based on the well-known description Horn logic (DHL) fragment
[55, 88], which is that subset of the description logic SHZQ(D) (close to the lan-
guage underlying OWL [104]) that falls inside the Horn logic fragment of first-order
logic without equality and without existential quantification.

Two different types of reasoning can be done with WSML-Core, namely, (1) sub-
sumption reasoning and (2) query answering. Subsumption reasoning is equivalent
to checking entailment of nonground formulae and can thus be reduced to check-
ing satisfiability using a first-order style or a description logic style calculus. Query
answering is equivalent to checking entailment of ground facts. Thus, query answer-
ing can also be reduced to satisfiability checking. However, using a first-order or
description logic calculus for query answering is not very efficient [55, 107]. For-
tunately, there are well-known techniques for query answering in the area of logic
programming and deductive databases [209].

For subsumption reasoning, the following are the requirements for a reasoner for
WSML-Core:

e Subsumption reasoning for WSMI.-Core can be done through unsatisfiability
with tableaux reasoning, theorem proving, or any other technique for checking
satisfiability of first-order theories or query containment.'

e In order to handle datatypes in WSML-Core, a datatype oracle is required which
has a sound and complete procedure for deciding satisfiability of conjunctions of
datatype predicates. Such requirements are described in [166].

! While query containment for logic programs is in general undecidable, some restricted
forms of logic programs containment can be decided. The simplest form, checking con-
tainment of conjunctive queries, is well known to be NP-complete [43]. In [37, 38] several
more expressive query classes and methods to decide query containment for these are dis-
cussed.
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For query answering, the following are the requirements for a reasoner for
WSML-Core:

e A Datalog engine which can handle integrity constraints (for checking

datatypes).
e Built-in predicates for handling strings and integers. For integers, basic arith-
metic functions (+, —, /, X) should be provided, as well as basic comparison

operators (=, #, >, <). For strings, at least the (in)equality predicates should be
built in.

e The symbols true and false. The former represents universal truth; the latter rep-
resents falsehood. If false is derived form the program, the program is inconsis-
tent. These symbols can be eliminated through simple preprocessing steps [56].

WSML-Flight

WSML-Flight extends WSML-Core with the full expressive power of Datalog rules,
default negation, the full-blown use of integrity constraints (note that constraints
are already in WSML-Core; however, they are only used for datatype predicates),
(in)equality for abstract individuals, and metamodeling.

The semantics of WSML-Flight is grounded in logic programming. Since there
exists no efficient implementation of query containment and since this problem is un-
decidable in general, the only reasoning task we envision for WSML-Flight is query
answering (i.e., entailment of ground facts). Notice that subsumption reasoning can
always be done for the WSML-Core subset of an ontology.

The additional requirements for a WSML-Flight reasoner over the requirements
for a WSML-Core reasoner are:

e Full Datalog support.
e Support for (stratified) default negation.
e A built-in equality predicate (in the body of the rule).

Equality could also be axiomatized in the program; however, this would seriously
degrade the performance of query answering. Therefore, we state this as a formal
requirement.

The other features added in WSML-Flight compared with WSML-Core can be
eliminated in a preprocessing step. However, it would be favorable to have also the
following feature in the reasoner:

e Metamodeling (treating classes as instances, etc.) can be translated to plain Dat-
alog [55, 74, 107]. However, if metamodeling were built into the reasoner, less
effort would be required in the preprocessing step. Also, query answers might
have to be rewritten in order to deal with metamodeling [74].

WSML-Rule

WSML-Rule extends WSML-Flight with function symbols and additionally allows
unsafe rules. We furthermore expect an extension of WSMI-Rule with unstratified
negation under the well-founded semantics [82].
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WSML-DL

WSML-DL is an extension of WSML-Core to a full-fledged description logic with
an expressiveness similar to OWL DL, namely, SHZQ(D). Both query answering
and subsumption can be done by similar techniques as developed and implemented
in any of the currently popular description logic reasoners, such as FaCT++, Pellet,
and RACER.

Both WSML-Core and WSML-DL are based on the SHZQ(D) description
logic. However, WSML-Core correspondsto a restricted subset of SHZQ (D) which
falls in the Horn fragment. Thus, WSML-DL adds the following features to WSML-
Core: disjunction, (classical) negation, and existential quantification. In terms of
complexity, we know that the upper bound for the combined complexity for WSML-
Core (not taking into account the datatypes) is in ExpTime [48], because WSML-
Core is a subset of Datalog.

Summary

The major reasoning modes with WSML are the following:

e Query answering, which is the computation of all ground substitutions of free
variables in a query such that the ground version of the query under any of these
substitutions is logically entailed by an ontology (or more generally a knowledge
base).

e Logical entailment, which is given a set of statements (called assumptions) and a
(in general nonground) query, check whether the query can be inferred from the
assumptions.

Clearly, both reasoning modes are somehow related: For decidable languages,?
query answering can be reduced to logical entailment. Therefore, the system takes
all permutations of known terms as answers and checks which of these are entailed
in a given knowledge base. In the case of languages with an undecidable logical
entailment relation, this reduction can only be applied when one does not insist on
completeness of query answering.

Checking logical entailment of ground formulae can be solved by means of query
answering and in this respect usually with more efficient techniques than the general
problem of logical entailment of nonground formulae.

However, reductions from query answering to logical entailment (or the other
way around) often result in very inefficient algorithms for query answering (or logi-
cal entailment), such that very different techniques have been developed to solve both
tasks. Nevertheless this is not always the case. There are hybrid reasoning engines
that do such reductions in a rather efficient way. The KAON2? reasoning engine,

2 More precisely, we mean languages for which the logical entailment relation = is
decidable.
3 http://kaon2.semanticweb.org/
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for example, uses algorithms which reduce description logic knowledge bases to
disjunctive Datalog programs. It thus uses queries to solve logical entailment in de-
scription logic reasoning.

7.4 Reasoning Within SESA

Different components within SESA necessitate efficient reasoning functionality. In
the following we briefly outline these components and their reasoning requirements.

7.4.1 Discovery

Services can be described in various ways, as Chap. 8 will point out. In the simplest
case, a Web service can be considered and modeled as a set of objects. Taking a
more fine-grained perspective, Web Services could as well be considered as state
transitions on an abstract state space. The formal relation between the states of a
transition (called prestate and poststate) is captured by so-called preconditions and
postconditions.

Whereas in the former case, a simple ontological reasoning can be sufficient and
query answering can be applied, in the latter case, logical entailment between pre-
conditions and postconditions of Semantic Web Service descriptions and the client’s
goals will need to be checked in general. To support this fing-grained Web service
perspective, a reasoner needs thus to provide the reasoning task of checking (general)
logical entailment.

Thus, the discovery component can use both a description-logic-based and a
logic-programming-based reasoning engine, depending on the requested reason-
ing task.

7.4.2 Selection

In Chap. 9, the problem of ranking services on the basis of their nonfunctional prop-
erties will be described as an integrated part of the service selection. The ranking
process generates an ordered list of services out of candidate service sets.

During the ranking process, reasoning is used for evaluating the logical rules
that are used to model the nonfunctional properties of services. The nonfunctional
property values obtained by the evaluation are sorted and used to build an ordered
list of services.

As the selection component only reasons over rules, it is an optimal user of a
logic-programming-based reasoning engine.

7.4.3 Mediation

Data Mediation

In most data mediation scenarios in a semantic environment, the data to be mediated
is represented by ontology instances. As will be pointed out in Chap. 10, the auto-
matic mediation task relies on a semiautomatic approach (i.e., with user interaction)
of ontology mapping during design time.
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A common mediation scenario is then instance transformation, which cor-
responds to the task of mediating data between different actors. The instance
transformation task is part of a run-time process and needs to be executed com-
pletely automatically, based on already existing mappings created on the schema
level during the design-time phase. The mapping rules, the source instances, and, if
necessary, source and target schema information are loaded into the reasoning space.
The last of these is queried for instances of target concepts, and if semantically
related source instances exist, the rules produce as a result the target instances.

The logical mapping rules can be represented in several languages, depending on
the available reasoning support.

Process Mediation

The process mediation addresses the behavioral mediation problem in the context of
Semantic Web Services, i.e., it is responsible for resolving mismatches between the
service requester’s and the service provider’s choreographies. Chapter 10 describes
an example scenario in which problems occur when two actors are communicating,
and where mismatches between their communication patterns can be found. The
process mediation uses reasoning to check whether messages (containing instances
of concepts, in terms of the sender’s/targeted partner’s ontology) are expected at a
certain phase of the communication. This is done by evaluating transition rules.

7.5 A Generic Framework for Reasoning with WSML

The WSML2Reasoner* framework (Fig. 7.1) is a generic, flexible architecture for
reasoning with the different variants of the WSML family. During the design phase,
great importance was attached to system modularity, reuse of existing technologies,
and flexibility in configuration and customization of a reasoning system for specific
reasoning tasks. The fact that WSML is based on (theoretically and practically) well-
studied knowledge representation paradigms, for which various systems have already
been implemented and tested, supported this design decision. The WSML2Reasoner
framework allows the easy integration of such external reasoning components.

Consequently instead of implementing new reasoners, one can use existing rea-
soner implementations for WSML through a wrapper that maps WSML expressions
first into common (shared) knowledge representation formats (different ones for the
rule-based or description-logic-based WSML variants), and then via specific adapters
into the appropriate syntaxes of concrete reasoning engines. The wrapper thus con-
tains various validation, normalization, and transformation functionalities that are
reusable across different WSML variants.

This generic approach allows people to use their specific existing reasoner of
choice (which is independent of WSML) in the WSML context, and it provides peo-
ple with the possibility to exploit systems that have already been developed already
and that are therefore well tuned with respect to performance and stability.

* http://tools.deri.org/wsml2reasoner/index.html
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Figure 7.1. High-level architecture of the reasoning system and development phases

7.5.1 Reasoning with Rule-Based WSML

We present a framework for reasoning with rule-based WSML variants (with fo-
cus on WSML-Core, WSML-Flight, and WSML-Rule) that builds on existing in-
frastructure for inferencing in rule-based formalisms.The framework is based on
a semantics-preserving syntactic transformation of WSML ontologies to Datalog
programs [47] with (in)equality and integrity constraints, as described in the WSML
specification [53]. To make use of existing rule engines, the reasoning framework
performs various syntactical transformations to convert an original ontology in
WSML syntax into a semantically equivalent Datalog program. The WSML reason-
ing tasks of checking knowledge base satisfiability and of instance retrieval are then
realized by means of Datalog querying via calls to an underlying Datalog inference
engine that is fed with the rules contained in this program.

Besides these standard reasoning tasks, the framework provides debugging fea-
tures that support an ontology engineer in the task of ontology development: violated
constraints are pointed out together with some details on the ontological entities that
cause the violation. Such a feature helps to improve the error reporting in situations
of erroneous modeling.

Instead of directly mapping WSML entities, i.e., concepts, instances, and at-
tributes, to Datalog predicates and constants, we use special metalevel predicates
and axioms which form a vocabulary on reified entities for reproducing the WSML
constructs in Datalog. This way of using Datalog as an underlying formalism facili-
tates the metamodeling features of WSML.
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Ontology Transformation

The transformation of a WSML ontology to Datalog rules forms a pipeline of sin-
gle transformation steps which are subsequently applied, starting from the original
ontology:

e Axiomatization: All conceptual elements are converted into appropriate axioms
specified by logical expressions, according to [53]. The resulting set of logical
expressions is semantically equivalent to the original WSML ontology.

e Normalization: The complexity of WSML logical expressions is reduced ac-
cording to [53], bringing the expressions closer to the simple syntactic form of
literals in Datalog rules.

e Lloyd-Topor transformation: The (still) complex WSML logical expressions
are flattened, producing simple rules according to the Lloyd—Topor transforma-
tions [141]. After this step, the resulting WSML expressions have the form of
proper Datalog rules with a single head and conjunctive (possibly negated) body
literals.

e Datalog rule generation: In a final step all WSML logical expressions are trans-
formed to a Datalog program with generic Datalog rules that represent the con-
tent of the original WSML ontology.

The resulting Datalog rules are of the form

H:—BiA- A By,

where H and B; are literals for the head and the body of the rule, respectively.

Architecture and Internal Layering

Figure 7.2 shows the internal architecture of the WSML2Reasoner framework that
is related to the rule-based variants of WSML, as well as the data flow during a
prototypical usage scenario. The outer box outlines a WSML reasoner component
that allows a user to register WSML-Core, WSML-Flight, or WSML-Rule ontologies
and to pose queries on them. The inner box illustrates the transformation pipeline
introduced earlier and shows its subsequent steps in a layering scheme.

Registered ontologies go through all the transformation steps, whereas user
queries are injected at a later stage, skipping the nonapplicable axiomatization and
constraint replacement steps. Here, the internal layering scheme allows for an easy
reorganization and reuse of the transformation steps on demand, ensuring high flex-
ibility and modularity.

The core component of the framework is an exchangeable Datalog inference en-
gine wrapped by a reasoner facade which embeds it in the framework infrastructure.
This facade mediates between the generic Datalog program produced in the transfor-
mations and the tool-specific Datalog implementation and built-in predicates used by
the external inference engine.
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Supported Reasoning Tasks

The following reasoning tasks are realized by performing Datalog queries on a Dat-
alog program. As result, a query yields a set of tuples that instantiate the variables in
the query.

Query answering: The task of computing all ground substitutions of free vari-
ables in a query such that the ground version of the query under any of these
substitutions is logically entailed by an ontology.

Ontology consistency: This task of checking a WSML ontology for consistency
is done by querying for the empty clause. If the resulting set is empty, then the
empty clause could not be derived from the program and the original ontology is
satisfiable, otherwise it is not.

Entailment: The reasoning task of entailment of ground facts by a WSML on-
tology can be done by using queries that contain no variables.

Retrieval: Instance retrieval can be performed by posing queries that contain
variables to the Datalog program. The resulting set contains all tuples for which
an instantiation of the query expression is entailed by the original ontology.

Debugging Support

During the process of ontology development, an ontology engineer can easily con-
struct an erroneous model containing contradictory information. In order to produce
consistent ontologies, inconsistencies should be reported to engineers with some de-
tails about the ontological elements that cause the inconsistency.
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In rule-based WSML, the source for erroneous modeling are always constraints,
together with a violating situation of concrete instances related via attributes. The
plain Datalog mechanisms employed in the reasoning framework only allow for
checking whether some constraint is violated, i.e., whether the empty clause is
derived from the Datalog program, indicating that the original ontology contains
errors — more detailed information about the problem is not reported. Experience
shows that it is a very hard task to identify and correct errors in the ontology without
such background information.

The WSML2Reasoner framework supports debugging features that provide in-
formation about the ontology entities which are involved in a constraint violation.
This is achieved by replacing constraints with appropriate rules that contain the
needed additional information in their heads.

7.5.2 Reasoning with WSML-DL

In addition to the rule-based reasoning support, the WSML2Reasoner framework
also supports description-logic-based reasoning for WSML-DL. It is based on a
semantics-preserving syntactic transformation of WSML-DL ontologies to OWL DL
ontologies, as described in [113]. The WSML reasoning tasks of checking ontology
consistency, entailment, and instance retrieval can then be performed by means of
OWL DL reasoning applied on a transformed ontology. Thus, the framework directly
builds on top of existing OWL DL or description logic reasoning engines.

Besides the reasoning tasks, the framework provides validation of WSML-DL
ontologies, as well as the serialization of the latter to OWL DL. However the seri-
alization to OWL DL is not complete, and details of the restrictions are given in the
following section on ontology transformation.

Ontology Transformation

The transformation of a WSML-DL ontology to an OWL DL ontology is done in a
line of single transformation steps that are applied subsequently.

o Relations to attributes: Replace relations, subrelations, and relation instances
by attributes and axioms, according to the preprocessing steps described in [113].

e Axiomatization: All conceptual elements are converted into appropriate axioms
specified by logical expressions, according to [53]. The resulting set of logical
expressions is semantically equivalent to the original WSML ontology.

e Implication reduction rules: Replace equivalences and right implications in
logical expressions by left implications.

e Inverse implication reduction rules: Replace conjunctions on the left side and
disjunctions on the right side of an inverse implication by left implications.

e Molecule decomposition rules: Replace complex molecules inside a logical ex-
pression by conjunctions of simple ones.
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e OWL API transformation: All logical expressions that result from the trans-
formation and normalization steps described above are processed one by one.
Each logical expression is translated into the corresponding OWL description,
according to the mapping described in [113].

The transformation from WSML-DL to OWL DL is not complete. The restric-
tions are mainly due to the differences in the description logics underlying WSML-
DL (SHZQ(D)) and OWL DL (SHOZN(D)). OWL DL does not support the
following WSML-DL features:

Datatype predicates: Datatype predicates are lost during the transformation.
Qualified number restrictions: Qualified number restrictions (QNRs) are lost
during the transformation. In [113] a possible workaround is mentioned, as well
as a nonendorsed OWL extension; both would allow one to translate QNRs into
OWL DL (only approximated with the workaround).

Architecture and Internal Layering

Figure 7.3 shows the internal architecture of the WSML2Reasoner framework that is
related to WSML-DL, as well as the data flow during a prototypical usage scenario.
The outer box outlines a WSML reasoner component that allows a user to register
WSML-DL ontologies and to reason over them. The inner box illustrates the trans-
formation pipeline introduced earlier and shows its subsequent steps in a layering
scheme.
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Figure 7.3. WSML2Reasoner — description-logic-based internal framework architecture
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Registered ontologies go through all the transformation steps, whereas the user
reasoning tasks are injected at a later stage, skipping the nonapplicable axiomatiza-
tion and normalization steps. Here, the internal layering scheme allows for an easy
reorganization and reuse of the transformation steps on demand, ensuring high flex-
ibility and modularity.

The core component of the framework is an exchangeable description logic or
OWL DL inference engine wrapped by a reasoner facade which embeds it in the
framework infrastructure. This facade mediates between the OWL DL ontology pro-
duced in the transformations and the tool-specific implementation used by the exter-
nal inference engine.

Supported Reasoning Tasks

The following reasoning tasks are supported by the WSML-DL reasoner within the
WSML2Reasoner framework:

o Knowledge base consistency: This task of checking a WSML-DL ontology for
consistency ensures that the ontology does not contain any contradictory facts.
It checks whether the TBox and the ABox of the knowledge base do have a
common, nonempty, model.

e Concept satisfiability: This task checks whether there exists a model of the
knowledge base in which a given concept is interpreted as nonempty.

e Concept subsumption: This tasks checks whether a concept A is more general
than a concept B, i.e., whether B denotes a subset of the set denoted by A. This
task can also be used to check for concept equivalence or disjointness.

e Instance checking: This tasks checks whether a given instance is member of a
given concept.

e Realization: This task determines the direct concept that a given instance is a
member of.

e Instance retrieval: This task is about retrieving all instances of a given concept.
It also allows one to retrieve tuples of instances that satisfy certain conditions.

The reasoning tasks are embedded within a good deal of concrete tasks, such as,
e.g., Get all direct or indirect subconcepts or superconcepts of a given concept, Get
all constraint or inferring attributes from the ontology, Check if two concepts are
equivalent, Get all instances of a specified concept, etc.

7.6 Rule Interchange Format
This section introduces the Rule Interchange Format (RIF) layer, which aims to

specify a core rule language plus extensions which together allow rule translation
between diverse rule languages and rule interchange between diverse rule systems,
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including publishing, sharing, and reusing of existing rules. The work on RIF is led
by the W3C RIF Working Group® and can be seen as an advancement of existing
logic programming.

Although rule-based systems and rule languages have already played an impor-
tant role in the history of computer science, they seem to have had a new life since the
continuous growth of the Semantic Web. So far there is no standard for rule-based
technologies; the establishment of such standards is the goal of the RIF Working
Group. The standards shall be characterized by their easy extensibility, which will
allow them to deal with the further evolution of rule-based technologies.

There is a large interest in RIF on the part of both industry and different user
communities, such as, e.g., business rules and Semantic Web users. Their specific
needs are expressed within a set of use case scenarios that are representative for the
types of application scenarios that the RIF is intended to support.® They can then be
taken into account for the eventual specification of extensions.

7.6.1 Architecture

The RIF Working Group is first developing a Core Condition Language that will be
a shared part of all RIF dialects. The RIF has been designed as a “layered archi-
tecture organized around the notion of a dialect.”” A dialect is a rule language with
a well-defined syntax and semantics, whereas the latter must be model-theoretic,
proof-theoretic, or operational. Targeted logical paradigms for RIF dialects are, e.g.,
production rules, logic programming, first-order-logic-based rules, reactive rules,
and normative rules (integrity constraints); all dialects need to extend the RIF Core
dialect.

7.6.2 Syntax and Semantics

According to the RIF Core Design Working Draft, RIF Core corresponds to the
language of definite Horn rules with equality (and with a standard first-order seman-
tics). The semantics of RIF seem hence to be similar to the semantics of WSML, as
described in Chap. 3.

Syntactically RIF has been designed as a Web language, supporting, e.g., URIs
as identifiers and XML Schema datatypes. Nevertheless, this does not prevent RIF
interoperability with rule languages in general, independent of, or not limited to,
the Web. To be precise, three different syntaxes are meant to be developed for RIF:
(1) a human-readable syntax, (2) an abstract syntax, and (3) an exchange syntax
(e.g., XML or RDF). The concrete human-readable syntax is still open, i.e., work in
progress.

® http://www.w3.0rg/2005/rules/wg html
6 http://www.w3.org/TR/rif-ucr/

" http://www.w3.org/TR/rif-core/

8 http://www.w3.org/TR/rif-core/
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7.7 Conclusion

In the following we will provide a conclusion concerning the path we went through
the domain of reasoning, and will outline some future research possibilities.

7.7.1 Conclusion

In this chapter we have defined what we understand by the often used and abused
term “reasoning,”’ i.e., the task of inferring new (i.e., not explicitly stated) knowl-
edge from a given set of statements (or a knowledge base). We have shown the major
reasoning requirements, with focus on Semantic Web Services. Next we briefly intro-
duced the two well-known logical formalisms that have served as a basis for WSML,
namely, description logics and logic programming. We have explained concepts such
as “unique name assumption” and “open/closed world assumption,” which are im-
portant in the design of ontologies using the two logical formalisms. Related to the
Semantic Web, to ontologies, and depending on the underlying logical formalism, we
have shown some major reasoning tasks, such as, e.g., checking ontology/knowledge
base consistency, query answering, concept subsumption, and instance retrieval.

As the main application domain of description logics we have shown the design
of ontologies, i.e., describing terminologies and relations between the elements of
the terminologics. Reasoning tasks such as subsumption checking or satisfiability
checking are executed efficiently by descrition logic reasoning engines. However,
we have also identified two major drawbacks of description logics, i.e., they have
only limited expressivity owing to a lack of available modeling primitives and they
cannot efficiently handle reasoning over large sets of instances.

The main application domain of logic programming lies in the specification of
rules and constraints, which allows more complex descriptions for, e.g., Semantic
Web Services. Logic programming reasoners deal very well with query answering,
but they are not meant to be used as subsumption reasoners.

We have defined the reasoning requirements of the different WSMIL. variants,
and have outlined the need for reasoning of the SESA components discovery, se-
lection, and mediation. Then we introduced WSML2Reasoner, a generic framework
for reasoning with WSML, and showed in more detail the functioning of reasoning
with rule-based WSML and with WSML-DL. Their syntaxes are transformed from
WSML to Datalog or OWL DL, respectively, and then the framework enables the
use of existing Datalog, or OWL DL, reasoning engines.

Furthermore we briefly introduced the RIF, which aims to become an interlingua
into which rule languages can be mapped, even allowing the interchange of rule
reasoning engines.

Throughout the chapter we have focused on the importance of reasoning for the
success of the Semantic Web and Semantic Web Services. We have shown that rea-
soning systems are the crucial infrastructure which is needed for exploiting the se-
mantics of service descriptions in any form, e.g., in service discovery. Thus, without
reasoning, semantic information cannot be efficiently used.
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7.7.2 Future Research

The following outlines some topics in the reasoning area that are still the subject of
research, as well as possible future reseach topics:

Reasoning in distributed environments.

Reasoning with heterogeneous and conflicting information.

Reasoning over (very) large data (instances) sets.

Reasoning about nonfunctional aspects of Web Services.

Reasoning about Web service interface descriptions, i.e., choreographies and or-

chestrations.

e reasoning with integrating frameworks based on classical first-order logic and
nonmonotonic logic programming.
New techniques for description logic reasoning.

e Hybrid reasoning based on description logics and logic programming.
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Discovery

Realizing the vision of the Semantically Enabled Service-oriented Architecture
(SESA) involves a number of tasks. Within this chapter we will focus on the dis-
covery task, the annotations necessary to automate it, and the tools to process them
(discovery engine).

WSMO provides a conceptual framework for semantically describing Web Ser-
vices and their specific properties. We discuss how WSMO can be used for service
discovery and provide a proper conceptual grounding. We will discuss how different
mechanisms can be used to discover Web Services and especially what consequences
those mechanisms have on the complexity of the required annotations as well as on
the quality of the results. It is important to understand the conceptual model and the
particular assumptions underlying a discovery solution in order to utilize their results

properly.

8.1 A Conceptual Model for Discovery

A workable approach to automating service discovery must define precisely its con-
ceptual model and its assumptions. A logical formalism alone without a proper con-
ceptualization cannot solve the underlying problem. To describe such an approach,
we start by aiming to provide a common understanding of what a service is and the
levels of abstraction in its description, on the basis of [178], and we also state our
assumptions about the elements involved in the process of locating suitable services
for service requesters.

First, let us clarify the terms “service” and “Web service” themselves. The
English word “service” is overloaded in its meaning. In the business world, a “ser-
vice” normally denotes the provision of a general business activity which provides
a certain value to the customer [14]. In computer science, in contrast, the term “ser-
vice” is often used synonymously with “Web service”, i.e., a software component
accessible over the Internet via a standardized interface. Preist [178] defines these
terms as follows:
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e Service. A service is defined as the provision of a concrete product or abstract
value in some domain. As an example, let us consider a user who wants to book
a flight from Innsbruck to Frankfurt. Following our definition of a service, we
mean the actual transport, fulfilling user constraints such as a certain date. The
provision of the service as such, and the contractual issues around this service
provision, are independent of how the supplier and the provider interact. It is
irrelevant whether the requester goes to an airline ticket office or uses the airline’s
Web site to book the flight. We understand the term “service” in this sense, that
is, as a provision of value.

o Web service. Web Services are defined as computational entitics accessible over
the Internet (using Web service standards and protocols) via platform- and
programming-language-independent interfaces. Returning to our previous exam-
ple, an airline might provide a software component accessible via Web service
standards, i.¢., a Web service to request the booking of a flight; the Web service
is an electronic means to request a service, but is not the service itself. We un-
derstand the term “Web service” as a means to request a service over standard
protocols, described using widely accepted standards. Thus, a Web service is a
means to consume an actual service, or to place a contract for an actual service.

In order to deliver a service, a service provider usually needs certain information
from the requester. For instance, booking a flight requires the name of the person
flying, the itinerary, and a valid credit card number as input information. This input
data will determine what has to be provided. In the real world, we have a further
complication in regard to discovery and Web service description. In general, a service
offered by a provider does not stay the same, but changes over time. For example,
the availability of seats in an airplane changes over time.

This also has implications on how Web Services are described. Clearly it is not
feasible to describe the availability of an entire fleet of airplanes within the semantic
annotation of the Web service interface. In fact (1) this would partially duplicate
the functionality of the actual service and (2) such a description would be quickly
outdated. In general, our assumption is that for discovery it is not required to describe
each single possible service that can be provided (e.g., a particular ticket for a specific
date), but that the overall capability of the service is of interest, i.e., that the service
sells flight tickets for charter flights to popular holiday destinations within Europe.

In the following we discuss in a more concrete way what such descriptions can
look like in various levels of abstraction and how these can be expressed using the
WSMO framework.

8.2 Web Services at Various Levels of Abstraction

We now discuss in more detail how Web service discovery is addressed within the
WSMO framework. We outline several different levels that require different efforts
for annotation and description of both goals and services and deliver results of differ-
ent accuracy. Each approach addresses a different level of abstraction in Web service
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descriptions. The various techniques taken together help to create a workable solu-
tion to the problem of Web service discovery which addresses practical requirements
and is based on realistic assumptions.

The descriptions of Web Services, as published by service providers, and the
goals of service requesters need to be compared with one another during the dis-
covery process in order to identify matching Web Services and goals. In essence,
matching in the discovery process is about finding common elements in these de-
scriptions. Depending on the level of detail in which we consider these entities, we
end up with models of Web Services at varying levels of abstraction.

At the most fine-grained level, we can consider services as concrete state transi-
tions from a prestate to a poststate. These states determine precisely how the world
is before and after the service has been provided. On a more abstract level, we can
ignore the detailed structure of services (i.e., the respective states), understand them
purely as abstract objects, and characterize their specific properties. In terms of on-
tologies, we would then consider services as instances and Web Services as con-
cepts. At the most abstract level, we can abstract even further in the description of
abstract services by ignoring the description of the possible elements of the set. At
this level, we would simply use a term or keyword for describing the abstract ser-
vice and neglect any information about the fine-grained structure. Essentially, we are
considering keyword-based descriptions here.

Each of these levels of abstraction implies a different description of Web Ser-
vices, ranging from detailed characterizations of possible state transitions, less de-
tailed descriptions using (complex) concepts in an ontology, to simple unstructured
keywords. Consequently, the achievable accuracy of a result in the discovery process
varies significantly, since more or less structure is reflected in the descriptions. On
the other hand, the ease of providing the descriptions varies drastically between these
levels as well. Whereas simple keywords are easy to provide, the description of con-
cepts already requires more effort. Detailed state-based descriptions can only be cre-
ated by specially trained experts. The more fine-grained a Web service description
is, not only the effort of creating it increases, but also the algorithms that deal with
these descriptions become more complex.

Therefore, there is an interesting trade-off between the possible achievable accu-
racy, the ease of creating the descriptions, and the degree of computational efficiency
of the discovery process.

8.3 Keyword-Based Discovery

Keyword-based discovery is a basic ingredient in a complete framework for Semantic
Web Service discovery. By performing a keyword-based search, one can filter or rank
the huge number of available services rather quickly.

In a typical keyword-based scenario, a keyword-based query engine is used to
discover services. A query, which is basically a set of keywords, is provided as in-
put to a query engine. The query engine matches the keywords in the user’s input
against the keywords used to describe the service. A query with the same meaning
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can be formulated by using a dictionary of synonyms, such as WordNet [71]. The
semantics of the query remains the same but, because of the different keywords used
(synonyms of previous ones), more services than possibly fulfill the user’s request are
found. Moreover, by using dictionaries such as WordNet, as well as natural-language
processing techniques, one can, in principle, achieve an increase in the semantic rel-
evance of the search results (with regard to the search request) [182]. Nonetheless,
such techniques are inherently restricted by the ambiguities of natural language and
the lack of semantic understanding of natural-language descriptions by algorithmic
systems.

The two major advantages of using keyword-based discovery are that the anno-
tations required are already present if WSDL-based Web Services are used and that
keyword-matching engines already have a high maturity and can scale up easily with
a high number of services. However, up to now only little work has been done to opti-
mize existing indexing and retrieval systems for the Web service domain. The service
description in the form of a WSDL document is a well-structured XML document;
terms used in different contexts (interface, operation, input/output) have a substan-
tially different meaning. In the case of Web documents major search engines already
use the context of the term to influence the ranking, such that a term appearing in the
URL or title is considered more important than others.

In the following we give a brief overview of existing approaches that rely on
keyword-based matching. We also give some quantitive data of the currently pub-
licly accessible Web Services. As mentioned earlier, different discovery scenarios
have different requirements with respect to the precision of annotation and quality
of discovery results. Clearly when looking at publicly available services the amount
of control over the publishers is minimal and thus the quality of annotations is rather
on the lower bound of the spectrum.

8.3.1 Existing Approaches for Keyword-Based Discovery

As we cannot make any statements about private, or intranet, usage of Web Services
by its definition, all empirical results presented are based on publicly available Web
Services. On the basis of previous work [13, 62, 68, 123] and our own observation,
we have identified three major approaches for discovering publicly available Web
Services:

1. Universal Description, Discovery, and Integration (UDDI) [16] is a standard for
centralized repositories. The first UDDI business registry (UBR) nodes were run
by IBM, Microsoft, SAP, and NTT Com.

2. Service directories (or portals) which gather services using focused crawlers or
manual registration and offer a search functionality via a HTML interface.

3. Standard Web search engines which are able to restrict the search in some way to
retrieve WSDIL. descriptions. Although this is no guarantee of finding services,
this possibility provides the biggest coverage.
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When looking at these approaches, we focus on two aspects: (1) the number of
services; (2) the quality and quantity of information that is associated with them.
For example, how many aspects of a service are described and how accurate those
descriptions are.

Number of Services

As the first step we have investigated in more detail the number of services that can
be found using the various means. In the case of UDDI we had to realize that the
public repositories were shut down at the beginning of 2006,! so we could not do
an analysis ourselves. However earlier work from 2004 [123] reported that only one
third of the 1,200 registered services contained references to valid WSDL files. To
examine the number of services available in the various Web portals (see Table 8.1
for a complete list) we extracted the number of unique WSDL files referenced from
each site and subsequently verified whether the documents were still accessible. To
determine the number of services available via search engines like Google? or Ya-
hoo!? we encountered two problems. First, there are no means to retrieve all results.*
The second major problem is that there are no means to formulate a query that only
returns Web service descriptions. The numbers are obtained by querying for all re-
sources having the keyword “wsdl” in the URL. Of course there is no guarantee that
the document retrieved from those URLs will includes a WSDL document; however,
we could only verify this for the results we obtained from the Alexa’ search engine,
where about 12% of the URLs did resolve to WSDL documents.

Table 8.1. Survey results

Repository No. of services No. of WSDL Liveliness Categorization
claimed documents
retrieved
UBR 1,200 300 No Yes
RemoteMethods 319 205 No Yes
StrikeIron 638 508 Yes Yes
Woogle 751 312 Yes Yes
XMethods 505 460 No No
Programmable Web 80 77 Yes No
Google 262,000 NA No No
Yahoo! 61,800 NA No No
Alexa 30,846 3,630 No No

NA not available

L http://www.addi.org/find. htm]

2 http://google.com

3 http://yahoo.com

4 Both Google and Yahoo! show only the first 1,000 results per query
® http://alexa.com
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Available Information

As we did not have access to the UDDI repositories, we could not evaluate the qual-
ity of information. However very low quality with respect to the data was reported
in [123], i.e., many service descriptions that are pure tests or references to nonexist-
ing WSDL files. Search engines like Google do not collect specific service-related
information: the ranking is based on the number of incoming links and the matching
is done on a keyword level without considering the WSDL structure: moreover no
availability or other service-related information is given. The Web service directories
provide more information. This includes pricing data, scoring and review systems,
provider information, textual descriptions, and links to online documentation. Only
Woogle [62] operates solely on the information given with the WSDL document.
ProgrammableWeb,° as one of the portals considered, has the most information fields
(30); however, many services only have filled out a small subset of those. Morcover
it is a generic repository for Web APIs and not only for Web Services that use the
WSDL technologys; in fact only 20% of the 400 registered services use WSDL.

Table 8.1 summarizes our observations. The first column gives the number of
services that are reported by the respective means of discovery, the second column
gives the number of WSDL documents we could retrieve, and the third and fourth
columns indicate if particular information is available.

Summary

One has to conclude that for publicly available Web Services the UDDI-based ap-
proach has failed and has been discontinued. Using normal search engines, one can
achieve the broadest coverage; however, one has to spend considerable time in brows-
ing through results, since one cannot efficiently filter those for Web Services. The
various dedicated portal pages are at present the most convenient way to find Web
Services. Except for Woogle, they rely on manually maintained repositories and have
only a limited number of services. We also included ProgrammableWeb as a reposi-
tory; however, only a small portion of the APIs registered use WSDL technology.

8.3.2 A Keyword-Based Service Search Engine

On the basis of the empirical studies described in the previous section, we have de-
veloped a Web service search engine. We start off by crawling the Web for WSDL
files. Although a WSDL. document is only a technical interface specification it is
the basis for our analysis aiming to extract high-level functional description. From
our experience more than 40% of all the WSDL files include textual documenta-
tion. And even if a WSDL file has no textual documentation it still contains very
valuable information, e.g., method names such as “SendSMSTolndia” with inputs
like “FromEmailAddress,” and “MobileNumber.” However, one needs to consider

S http://www.programmableweb.com/
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the particularities of a WSDL document. The meaning of a keyword can have a dif-
ferent impact on the overall functionality depending on its position: if “fax” is part
of the service name (or port type), it has a different relevance than if it occurs only
somewhere within the XML schema as part of the input information.

Implementation

We have implemented the method described above. Our prototype is available at
http://seekda.com. In the analysis step we removed duplicates and WSDL files that
did not include any valid end point definition. Within out experiments we could
gather about 10,000 different services. For filtering duplicates, we used the interface
identifier (porttype) together with the specific end-point URL as criteria.

For allowing keyword-based search, we implemented a tokenizer and lexical an-
alyzer on top of the tsearch2 library.” For example we added specific routines to
the tokenizer for taking care of the CamelCasing® often used by developers (such as
“WeatherForecastService”). These tokens are then reduced to lexemes by their re-
spective dictionaries. That is, e.g., the term “messages” is reduced to its linguistic
stem, i.e., “message.” In order to provide ranked results for a particular keyword we
assigned to each keyword one of four different weights depending on its position
within the document.

Regarding the technical properties we have so far monitored the response time,
and if a particular end point does adhere to the protocols it claims to support. More-
over we have included the results of an IP to geographic database mapping. A further
ranking criteria that we have included is the number of known Web pages that point
to a service description. While this characteristic has, in our opinion, not the same
relevance as for static content, it still provides a reasonable indicator for relevance.
Figure 8.1 shows a screen shot of the search engine prototype.

8.3.3 Summary and Conclusion

The standard model of syntactic search engines like Google alone is not well suited
for Web service discovery. Neither the identification of potential services through
keyword extraction nor the relevance ranking based on hyperlinks provides much
use in a Web service scenario. At the same time, approaches that have aimed at a
complete automation or focused only on a machine-to-machine interface such as
UDDI or several works in the area of Semantic Web Services are also not suitable
for a heterogenous and open Web environment.

Thus, in an environment where only little control can be put on the publishers of
services, keyword-based retrieval provides a reasonable compromise between accu-
racy in retrieval and the effort required to produce usable descriptions. The recently
founded company Seekda® has developed a keyword search engine for this purpose.

7 http://www.sai.msu.su/ megera/postgres/gist/tsearch/V2/

8 CamelCasing is a convention to avoid spaces by concatenating two words while making
the first letter always uppercase

9 http://seekda.com
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Figure 8.1. A keyword-based service search engine

Its approach is to postprocess interface description and to leverage as much structural
information to weight terms as possible. Although we are at the beginning of our
work our prototype shows that existing solutions cannot meet the already achieved
combination of broad coverage together with relative accuracy in the retrieval.

8.4 Discovery Based on Simple Semantic Descriptions

Keyword-based search is a widely used technique for information retrieval; however,
it does not use explicit, well-defined semantics. The keywords used to retrieve rele-
vant information do not have an explicit formalization and, therefore, do not allow
inferencing to improve the search results.

We consider the use of controlled vocabularies with explicit, formal semantics.
Ontologies are excellent and prominent conceptual means for this purpose. They
provide an explicit and shared terminology, explicate interdependencies between
single concepts, and thus are well suited for the description of Web Services and
requester goals. Moreover, ontologies can be formalized in logics which enables the
use of inference services for exploiting knowledge about the problem domain during
discovery.

In this section we present a formal modeling approach for Web Services and
goals which is based on set theory and exploits ontologies as a formal, machine-
processable representation of domain knowledge. We discuss Web service discovery
based on this approach for simple semantic descriptions and describe how we imple-
mented the set-based model in the formal framework of logic.
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8.4.1 The Model

One main characteristic of object-oriented approaches is that the problem domain
is understood as a set of objects and single objects can be grouped together into
sets or classes. Each class captures common (syntactic and semantic) features of its
elements. Features can be inherited between classes by defining class hierarchies.
This way, a problem domain can be structured as classes of objects and is basically
understood as a collection of classes (or sets of things). In particular, ontologies are
a popular knowledge-representation technique which usually exploits the very same
modeling paradigm.

In such modeling approaches the main semantic properties that one is interested
in are certain relationships between such sets or objects of the universe. Establishing
and checking such relationships is the main reasoning task which allows agents to
exploit knowledge formalized in the domain model (or ontology).

8.4.2 Describing Web Services and Goals

A Web service provides some value to its invoker and can be invoked by a client.
The invocation itself is based on Web service technologies like SOAP and WSDL;
however, these technical details of invocation are not necessarily relevant for discov-
ery based on functional specifications. Only if one considers discovery together with
the adaptation/invocation of the service one needs to cater for the particularities of
the invocation mechanism. To judge if the functionality offered by a Web service
matches the one requested it is not necessary to also check the compatibility on the
interface level, since it might be possible to bypass mismatches by mediators. The
execution of the Web service with particular input values generates certain informa-
tion as an output and achieves certain changes of the state of the world. An output
as well as an effect can be considered as objects which can be embedded in some
domain ontology, which means a formal conceptualization of the problem domain
under consideration.

Goals specify the desire of a client that he wants to have resolved after invoking
a Web service, which means they describe the information the client wants to receive
as the output of the Web service execution as well as the effects on the state of the
world that the client intends to achieve by invoking the Web service. This desire can
be represented as sets of elements which are relevant to the client as the outputs and
the effects of a service execution. Thus, goals refer to the state of the world which is
desired by executing some Web service.

Web Services and goals are represented as sets of objects in the approach de-
scribed here. The single descriptions of these sets refer to ontologies that capture
general knowledge about the problem domains under consideration. Hence, the ob-
jects described in some Web service description and the objects used in some goal
description can or might be interrelated in some way by ontologies. Eventually, such
an interrelation is needed to establish a match between goals and services. We define
domain-independent notions of match in Sect. 8.4.3.
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An important observation in the approach is that the description of a set of objects
for representing a goal or a Web service actually can be interpreted in different ways
and thus the description by means of a set is not semantically unique: A modeler
basically might want to express that either all of the elements that are contained in
the set are requested (in case of a goal description) or can be delivered (in case of a
Web service description), or that only some of these elements are requested (or can
be delivered).

Clearly, a modeler has some specific intuition in mind when specifying such
a set of relevant objects for a goal or Web service description and this intention
essentially determines whether we consider two descriptions to match or not. Thus,
these intuitions should be stated explicitly in the descriptions of service requests or
service advertisements.

For the sake of simplicity, we will consider in the following only outputs of a
service and do not treat effects explicitly. The separation of effects and outputs in
WSMO is a conceptual one and effects can basically be dealt with in the very same
way as postconditions. Nonetheless, it is useful to distinguish both since they are
conceptually different and we believe that it is beneficial for users to have the abil-
ity to apply different criteria for matching to outputs as well as effects in a service
discovery request. To augment the model discussed here accordingly is a straightfor-
ward endeavor.

Given our previous considerations we can model goals and Web Services as fol-
lows: A goal (G) as well as a Web service (W) is represented by a description as
a set of objects from a common universe ({G,W} € U) which represents the set
of relevant objects for the description, as well as an explicit specification about the
corresponding intention I € {V, 3} of the set.

8.4.3 Matching Web Services and Goals

In order to consider whether a goal G and a Web service W match on a semantic
level, the sets G’ and W describing these elements have to be interrelated somehow;
precisely speaking, we expect that some set-theoretic relationship between G and W
has to exist. The most basic set-theoretic relationships that one might consider are
the following:

G = W: Set equality

G C W: Goal description subset of Web service description

W C G: Web service description subset of goal description

G N W # (: Common element of goal and Web service description

G N W = (: No common element of goal and Web service description

These set-theoretic relationships basically provide the basic means for formaliz-
ing our intuitive understanding of a match between goals and Web Services in the
real world. In this scope, they have been considered to some extent already in the
literature, for instance, in [138, 168] in the context of service matchmaking based
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on description logics. The terminology for matching notions in these papers was in-
spired by work done in the context of component matching based on component
specifications [219].

On the other hand, we have to keep in mind that in our model these sets actually
only capture one part of the semantics of goals and Web service descriptions, namely,
the relevant objects for the service requester or service provider. The intentions of
these sets in the semantic description of the goal or Web service are not considered
but clearly affect whether a certain existing set-theoretic relationship between G and
W is considered to actually correspond to (or formalize) a match in the intuitive
sense. Hence, we have to consider the intentions of the respective sets as well. In the
following we will discuss the set-theoretic relationship for one example in detail and
summarize all theoretical combinations in a corresponding matrix.

Example: Intersection Match

We provide a detailed discussion for the case where there exist common elements
in goal and Web service description. For reasons of available space, the remaining
cases are only summarized in Fig. 8.2. In this case the set of relevant objects that
are advertised by the service provider and the set of relevant objects for the requester
have a nonempty intersection, i.e., there is an object which is relevant for both parties.
In a sense, this criterion can be seen as the weakest possible criterion for semantic
matching in this set-based modeling approach.

o [ =V, Iy = ¥: The service requester wants to get all of the objects and the
service provider claims that the Web service is able to deliver all the objects spec-
ified. In this case, the requester’s needs cannot be fully satisfied by the service.
However, the service can contribute to resolve the desire of the client. Thus, we
consider this case as a partial match.

e [o = 3, Iy = V: The service requester wants to get some of the objects, whereas
the service provider claims that the Web service is able to deliver all the objects
specified. In this case, the requester’s needs are fully covered by the Web service.
The requester might also receive objects which are not relevant for him.

e [o =V, Iyy = 3: The service requester wants to get all of the objects, whereas
the service provider claims that the Web service is able to deliver only some of
the objects specified. In this case, the requester’s needs are not fully covered. We
are not even able to determine whether the Web service can actually deliver any
of the objects desired by the requester and hence we consider this match as a
possible partial match.

GNW £ ITw=V Iw =13
Ie =V | Partial match | Possible partial match

Web '\
Service

Ig =13 Match Possible match

Figure 8.2. Common elements in goal and Web service description
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e [o = 3, Iy = 3: The service requester wants to get some of the objects and the
service provider claims that the Web service is able to deliver some of the objects
specified. In this case we have a possible match.

In [138] the situation where G N W # ) can be established is called intersection
match. However, in our model we do not necessarily consider the goal and the Web
service only as partially matching, as we have a match in the case where the goal has
an existential and the Web service a universal intention.

For a complete discussion of all possible matches we refer the reader to [115].
However, given the discussion for the case of an intersection match, it is straight-
forward to apply it to the remaining cases. In the next subsection we give a brief
summary of all possible combinations.

Summary of Understanding of Matching

Given some goal GG and some Web service W, Table 8.2 summarizes the discussion
and shows under which circumstances the presence of which set-theoretic relation-
ship between G and W is considered as a match, a partial match, a possible match, a
possible partial match, or a nonmatch.

In existing approaches to service discovery like those in [138, 168] the notion of
“intention” has at present not been reflected explicitly. As we have shown above, in-
tentions capture an important aspect of goal and Web service descriptions and affect
essentially the situations in which certain set-theoretic criteria represent our intuitive
understanding of matches properly.

The existing approaches so far basically can be understood as covering only the
second column of the table, namely, the situation where a goal has an existential
intention and a Web service has universal intention (I = 3, Iyyy = V).

We believe that certain pairs of intentions will occur more often in practice than
others: Web service providers, for example, have a strong interest in their Web Ser-
vices being discovered. If we compare the number of possible matches with a given

Table 8.2. Interaction between set-theoretic criteria, intentions, and our intuitive understand-
ing of matching

Iw=V Iw=V Iw=13 Iw=13

Ia=V Ie=13 Ia=V Ie=13
G=W Match Match Partial match Match
GCWwW Match Match Possible match Possible match
G O W Partial match  Match Partial match Match

GNW # 0 Partial match 'Match  Possible partial match Possible match

GNW =0 Nonmatch Nonmatch Nonmatch Nonmatch
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goal under existential and universal intentions, it seems most likely that providers
tend to use universal intentions, even if the description does not necessarily model
the real-world capability of the service accurately and promises too much. However,
if a service provider wants to be more accurate with his Web service description, then
in many situations he would have to use the existential intention.

For service requesters (in particular in an e-Business setting) we expect that the
existential intention will suffice in many situations; however, the requester has the
freedom to properly express stronger requests than existential goals (using universal
intention) if he needs to and thus get more accurate results in these situations.

8.4.4 Consistency of Descriptions

What we have not considered so far is the possibility of inconsistent descriptions for
goals and Web Services. We consider an empty set as an inconsistent description.
Obviously, such descriptions do not make any sense: A requester who is asking for
nothing as well as Web Services that do not deliver anything are simply superflu-
ous and undesired. Nonetheless, they might occur in cases where the descriptions
are quite complex or refer to several complex ontologies which are not themselves
designed by the modeler.

Additionally, when just being ignored they can have an undesired impact on
matching and thus discovery: Consider, for example, an inconsistent goal descrip-
tion, i.e., G = . If we check G for matching Web Services using the Plugin crite-
rion, i.e., G C W, then obviously every Web service matches. For a user (who is
not aware that his description is inconsistent, since otherwise he would usually not
pose the query) the result would seem rather strange and even incorrect because all
checked services actually will be matched. From a logical perspective this is indeed
not wrong, on the other hand it does not seem to be the best way to deal with the
situation, since the user gets neither a hint that his goal description is inconsistent
nor does he get (from his perspective) reasonable results.

Ignoring the possibility of inconsistent descriptions seems to be a bad idea, since
it will lead to nonintuitive results (garbage in—garbage out principle). However, to
check for inconsistent goal and Web service descriptions is not a task that is only
applicable at the design time. It should be good practice to forbid the creation of a
description which denotes an empty set, but the consistency does not depend exclu-
sively on the description itself, it also depends on all ontologies that the description
refers to. Hence, changes to such ontologies potentially can lead to inconsistent de-
scriptions. Moreover, since Web service and goals description may refer to differ-
ent ontologies, the combination of them (during matchmaking) may make a previ-
ously satisfiable goal description unsatisfiable. Thus, before checking for a match,
one must check for the satisfiability of ecach description involved.

8.4.5 Ranking Matches

As shown in Fig. 8.2, we basically have for each pair of intentions for a goal and
a Web service several formal criteria that capture actual matches, partial matches,
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possible matches, as well as nonmatches. According to elementary set theory the
single criteria are not completely separated, but the following interdependencies hold
(note that for some conclusions we require a description to be nonempty as discussed
before):
G=W=GCW,
G=W=G2>W,
GCW,G£0=GnW #0,
GOW,W#0=GnW #£0.

That means that certain formal set-theoretic criteria that we consider here are log-
ically stronger notions than others: if the stronger relationship holds then the weaker
relationship must hold as well. Using these properties, we can partially order the set-
theoretic criteria: C; =< Cs iff Cy is logically weaker (or equivalent) than C1, i.e.,

8.1

G=W) =2 (GCSW),(G2W) = (GNnW#D). (8.2)

Given a goal and a Web service description let “subsumes match” be the crite-
rion that captures the actual match. When a “subsumes match’ holds, then a logically
weaker criterion, such as “intersection match,” also holds. However, one has to note
that the logically stronger criterion provides additional knowledge about the rela-
tionship between the goal and the Web service. In this particular example “subsumes
match” also guarantees that no additional objects are delivered besides the one re-
quested. Since this property might be important for a requester, it does make sense to
allow the use of a particular criterion for the matching between goal and Web service
descriptions by the requester. A service requester basically can exploit this property
during a discovery process in order to ensure certain convenient properties from the
discovered Web Services.

To sum up, we have seen that there are cases where a client could benefit from
exploiting the additional semantics captured by matching criteria that are stronger
(i.e., =-smaller) than the weakest (i.e., =-maximal) criterion which represents an
actual match. Hence, it makes sense to not only allow the use of the weakest (i.e.,
=-maximal) criterion that actually denotes a match to be applied for matching but to
allow the user to manually raise the semantic requirements that are captured by the
criterion to apply and thus to reflect his interest faithfully. In particular this makes
sense for the case that a client does not want to accept that a Web service that poten-
tially delivers objects that have not been explicitly requested (in this case a subsumes
or an exact match has to be requested).

We have seen as well that in our general framework there is only one such addi-
tional property that actually can be considered as useful, namely, the property of a
Web service to not deliver objects that are irrelevant to the user. This leads us to al-
low the client to specify what particular kind of match he is accepting, by specifying
the two following dimensions:

1. Match, partial match, possible partial match, possible match.
2. Within each match it can be additionally specified if a service is allowed to
deliver objects that are not requested.
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Table 8.3. Formal criteria for checking different degrees of matching

Iy =V Iy =3
Additional " 299MONA - pgiigngy MO ddtional
objects OK aIIcJ>wed objects OK aIIcJ>wed
I =V match GCW G=W
I = 3/ match GNW £ GDOW GoOW GOW
Ig =V partial match GNW #£0 GDOW GDoOW GDOW
I =3 partial match
Ig =V possible match GCW -
I = 3 possible match GNW #0
I =V possible partial match GNW #0

I =3 possible partial match

Partial Order on “Match”

Similar to the partial order that is defined for the basic set-theoretic matching crite-
rion, we can also define a logical order on our intuitive understanding of the matching
notion with respect to the real world.

Match = partial match , possible match =< possible partial match (8.3)

The partial ordering can be exploited during matchmaking: in order to ensure
that a property is satisfied when matching (e.g., I¢ = 3, Iy =V, additional objects
might be delivered), the discovery component has to apply only the weakest criterion
still fulfilling the request and not all. In the given example it is only required to check
for an intersection match (G N W # §) and not for all set-theoretic relations sepa-
rately. Table 8.3 represents the result of this discussion for all possible combinations.
Matching criteria that are colored gray in Table 8.3 indicate that the criterion does in
fact not check the intuitive matching criteria specified (e.g., partial match or match),
but one which also satisfies the requested criteria owing to the partial order on the
intuitive matching notions.

8.4.6 Summary

It should be clear that a detected match in this framework for Web service discovery
is based on simple semantic annotation only and thus cannot provide very strong gua-
rantees for the actual accuracy of the results in each case. A detected match between
a goal and a Web service actually does not ensure that the Web service can really be
used for resolving the goal in the real world, since important information that affects
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this possibility is not specified in the descriptions: Is the requester actually able to
satisfy the requirements of the Web service when invoking and interacting with the
service, namely, the preconditions and choreography?

Nevertheless, the approach is based on a formal semantic model and uses formal
domain knowledge to detect matches. Thus, the achievable accuracy of the approach
(although being inherently limited) in general will be a lot higher than with keyword-
based approaches.

In this respect, it still can be considered as a semantic-driven heuristic for locating
Web Services which can resolve the goal of a service requester. We briefly summarize
the main advantages and drawbacks of the modeling approach discussed.

The main advantages are:

e This modeling approach is based on a very simple and intuitive perspective of
the world where everything is considered in terms of sets (or concepts).

e In contrast to other approaches, we start from building a model and analyzing the
intuitive understanding of a match and then try to capture the intuitive semantics
of the match. This results in giving the modeler more freedom to express his/her
desire, e.g., through the use of intentions.

e The approach represents a general framework which does not fix the language
to be used for describing goals and Web Services. It allows descriptions which
cannot be expressed using description logics and thus provides increased expres-
siveness.

e Because of the same conceptual modeling style, this approach potentially allows
a seamless integration of descriptions formalized in different languages, such as
present in the WSML family of languages.

The main drawback is that this approach does not capture the actual relation
between service input and the corresponding outputs. Thus, the semantics of a Web
service is only described in a conceptual manner. In fact, this can be too coarse-
grained for enabling the automation of the discovery and later execution of a service.

8.5 Discovery Based on Rich Semantic Descriptions

This section presents a model which allows for a precise definition of the notion Web
service. The model is not based on any specific logical formalism and thus can be
formally represented in various logics of sufficient expressivity to enable reasoning
with semantic descriptions of Web service capabilities. We will illustrate the model
in an intuitive fashion; for the formal definitions we refer the reader to [116].

8.5.1 A Changing World

We consider the world as an entity that changes over time. Entities that act in the
world — which can be anything from a human user to some computer program —
can affect how the world is perceived by themselves or other entities at some spe-
cific moment in time. At each point in time, the world is in one particular state that
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determines how the world is perceived by the entities acting therein. We need to
consider some language for describing the properties of the world in a state. In the
following we assume an arbitrary (but fixed) signature . that usually is based on
domain ontologies, and some language £(3.).

We use classical first-order logic for illustration purposes as this can casily be
applied to other languages such as WSML or OWL. Consider a signature . 2
{isAccount(-),balance(-), >,0,1,2,...} that denotes bank accounts and their bal-
ance. It allows comparison of the respective values in £(2.'), for instance, containing
expressions like V?z.(is Account(?x) — balance(?x) > 0) stating that the balance
of any account needs to be nonnegative. In the context of the dynamics and properties
of the world that can change, it is useful to distinguish between symbols in . that are
supposed to have always the same, fixed meaning (e.g., >, 0) and thus cannot be af-
fected by any entity that acts in the world, and symbols that can be affected and thus
can change their meaning during the execution a Web service (e.g., isAccount(-),
balance(-)). We refer to the former class of symbols by static symbols (denoted by
JJs) and the latter by dynamic symbols (denoted by })p).

Abstract State Spaces

We consider an abstract state space S to represent all possible states s of the world.
Each state s € S completely determines how the world is perceived by each entity
acting in S. Each statement ¢ € £(}) of an entity about the (current state of) the
world is either true or false.!®. Thus, a state s € S in fact defines an interpretation
7 (of some signature 3)). However, not all X -interpretations 7 represent senseful
observations since Z might not respect some “laws” that the world S underlies, e.g.,
that the balance of any bank account is not allowed to be negative. In the following,
we assume that these laws are captured by a background ontology 2 C £(X) and
denote the set of X -interpretations that respect §2 by Mods;({2). Considering our
example signature from above, the following interpretations denote states s € .S:

so0 : balance(acer) = 10 A balance(acez) = 100,

sn : balance(accr) = 30 A balance(accz) = 80.

Changing the World

By means of well-defined change operations, entities can affect the world that denote
state transitions in S. In our setting, these change operations are single concrete exe-
cutions of Web Services W. Following [114, 115], a change operation is represented
by a service S that is accessed via a Web service W. S is achieved by executing W
with some given input data iy, . .., i, that specify what kind of particular service S
accessible via W is requested by the client, i.e., S & W (iy,...,i,).

10 We consider classical logic (and thus only frue and false as truth values) here. However, the
model presented can be used as it is in the context of nonclassical logics by just considering
a different class of interpretations Z, e.g., in the case of multivalued logics, we can use
multivalued interpretations.
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Given input data 41, . . . , i, the execution of a Web service W essentially causes
a state transition 7 in S, transforming the current state of the world s € § into a
new state s’ € S. However, a transition 7 will in general not be an atomic transition
7= (s,5') € S x Sbutasequence T = (sg,...,5,) € ST, where 59 = s, 5, = 5’
and n > 1. In every intermediate state s; in 7 some effect can already be perceived
by an entity. This is especially relevant for Web Services that allow accessing long-
lasting activities that involve multiple conversation steps between the requester and
the Web service W. Note, that 7 = (sq, ..., s,) € ST implies that we assume Web
service executions ferminate. We consider this assumption as a useful one that should
be met in all practical application scenarios.

Let us consider an international bank transfer having as concrete input data the
information to transfer $20 from accy to acce. The model of the world might have
between sg and s,, the following intermediate state:

s1 : balance(acer) = 10 A balance(acez) = 80.

Outputs as Changes of an Information Space

During the execution W (iq, . .. ,4,) of a Web service W, W can send some informa-
tion as output to the requester. We consider these outputs as updates of the so-called
information space of the requester of a service .S. More precisely, we consider the
information space of some service requester as a set 1.5 C U of objects from some
universe U. Every object o € 1S has been received by the requester from W dur-
ing the execution W (iy,...,%,). During the execution the information space itself
evolves: Starting with the empty set when the Web service is invoked, the execution
leads to a monotonic sequence of information spaces § = I.Sy C I.S; C ... C IS;.
Monotonicity of the sequence models that information that has been received by the
user will not be forgotten until service execution completion.

Within our bank transfer example, during some transaction we might receive first
a message acknowledgment, and then a confirmation that the transaction has been
approved and initialized.

1S [E=ack(20051202, msgid23)

confirm(acci, accz, 20)

Observations in Abstract States

Our aim is to describe all the effects of Web service executions for a requester.
Obviously, a requester can observe in every state s € S world-related properties
represented by statements ¢ in £(J)) that hold in s. Additionally, he can perceive
the information space 1.S C U described above. Thus, the abstract state space S in
a sense “corresponds” to the observations that can be made in s, namely, all pairs
of Y-interpretations 7 € Mods;(§2) and (possible) information spaces IS C U.
Consequently, we represent the observations related to a state s by an observation
function w : S — Modx;(£2) x P(U) that assigns to every state s € S a pair
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(Z,1S) of a X-interpretation Z (respecting the domain laws {2) and an information
space 1.S. We denote the first component of w(s) by wy, (s) (real-world properties:
how an entity perceives the world) and the second component by w;(s) (informa-
tion space: how the invoker perceives the information space). However, we require
the observation function w to be a (fixed) total function as it cannot be arbitrary. This
means that the observations w(s) of any entity are well defined in every abstract state
s. Moreover, any perception representable in terms of £() and U that is consistent
with the domain model {2 should actually correspond to some abstract state s € &
by means of w, so that w is surjective. However, since we assume a fixed signature 5.
and thus a limited language for describing observations about the world, we do not
assume that w is injective, i.e., there could be distinct states s, s’ of the world which
cannot be distinguished by the (limited) language L£(2.), i.e., wrw (8) = wiw (s7).

The former means that a state s; : balance(accl123) = —10 is not a model since
it is inconsistent with the domain ontology (we previously required the balance to be
positive). The latter determines that there is always a corresponding abstract state to
a set of sentences. However, not all states in .A can be distinguished. For example. if
we model the transfer of money between two accounts and do not include details of
the transaction system, we cannot express the states between the initialization of the
transaction and its commit states. However, there are intermediate states, and only
by the limitations of £(}.) we cannot distinguish them.

Web Service Executions

Givensomeinputiy, . .., ,,the Webservice execution W (iq, ..., 4,) = (Sgy- -+, Sm)
starting in state so induces a sequence of observations (w(sg), ..., w(S;,)) which
can be made by the service requester during the execution. However, not all such
sequences 7 of abstract states actually represent a meaningful state transition caused
by an execution of W. For 7 to faithfully represent some W (i1, ..., i, ) we need to
require at least that for any two adjacent states s, s” in W (i1, ..., 4,) some change
can be observed by the invoker, and that objects which are in the information space
(i.e., have been received by the invoker) at some point in time during the execution
cannot disappear until the execution is completed. As discussed later, in general we
need to require some further constraints on a sequence 7 such that we can interpret
T as a possible run W (iy,...,i,) of a Web service W. We call sy the prestate of
the execution, s,, the poststate of the execution, and all other states in W (i1, ..., i)
intermediate states.

so @ balance(acer) = 10 A balance(accz) = 100
s1 @ balance(acer) = 10 A balance(acez) = 80

sn : balance(acer) = 30 A balance(accs) = 80

In the case of the transaction example s is the prestate with the initial balances.
In the intermediate state s; the balance of accy has already been reduced by $20,
but acc; has not yet been increased. s,, is the poststate of the transaction where the
money transfer has succeeded.
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Web Services

A Web service W then can be seen as a set of executions W (iy,...,4,) that can
be delivered by the Web service in any given state of the world to a requester when
equipped with any kind of valid input data 71, ...,%,. However, in order to keep
track of the input data that caused a specific execution, we need to represent a Web
service in terms of a slightly richer structure than a set, namely, a mapping between
the provided input values iy, . . . , i, and the resulting execution'! W (i1, ..., iy,).

In our running example the Web service of a bank accepting two account numbers
(i1,12) and some amount (i3) can yield an example. For all valid accounts (given a
sufficient initial balance) it will transfer the amount (i3) from 4, to i5. And thus
the actual Web Services corresponds to a set of state transitions (and not only one),
where each transition is determined by the concrete input values supplied.

Figure 8.3 illustrates the model presented. The Web service W provides four
different concrete services (S ...S4). Each single state is determined by the two
components of w — the information space and the real world. The Web service is
a set of possible transitions that is denoted by a dark area inside the abstract state
space.

The model presented gives a thorough mathematical model. For the formal def-
initions of this model we refer the reader to [116]. For the purpose of this book the
previous intuitive description should suffice. It is important to understand that this
model is defined in order to allow an unambiguous interpretation of Web service and
goal descriptions, i.e., that it provides a semantic to the syntactical description within
a capability. In the following we outline some basic semantic analyses that can be
performed on top of this model.

~

Information

(%) Abstract State Space

Space “_)is

State of

the world Wy

Figure 8.3. An abstract model of the world and the Web Services therein

' This implies that we use a deterministic model for Web Services here. An extension to a
nondeterministic perspective is straightforward.
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8.5.2 Applying the Formal Model for Semantic Analysis

To demonstrate the suitability of the proposed model, this section shows its benefi-
cial application for semantic analysis of functional descriptions. Based on our model-
theoretic framework, we can carry over several semantic standard notions from math-
ematical logic [65, 79] that refer to formal descriptions and are based on the model
notion to our particular context in a meaningful way.

Realizability

We can now define realizability of a description as the corresponding notion to sat-
isfiability in a logic. In logic a set of formulae is satisfiable if it has a model, i.e.,
if there exists an interpretation of the formulae that is true. The very same no-
tion can be applied to Web Services. Consider the following functional descrip-
tion D = (¢Pr¢, ¢Pos! IFp) describing Web Services for account withdraws:
IFp = {?acc, 7amt}.

O’ 2amt > 0 "+ balance(?acc) = balancepre(?acc)—Tamt

At a first glance, the description given seems to be implementable within some Web
service W that satisfies D. However, on taking a closer look at the respective domain
ontology it becomes obvious that this actually is not the case. The ontology defines
that a balance might not be negative, but the precondition does not prevent the bal-
ance being less than the withdrawal. Let us assume that there is a Web service W re-
alizing D. When considering an input binding /3 with 3(?amt) > balancep,.(?acc),
the precondition is satisfied and thus the postcondition should hold in the final state
of the respective execution, i.e., wyw(sm), 5 | V?acc.balance(?acc) < 0. How-
ever, this is inconsistent with the domain ontology since 2 = balance(?acc) > 0
and thus s,,, cannot exist in A. This is a contradiction and shows that no Web service
W with W =7 D can exist. To fix the description such that it becomes realizable,
we need to extend the precondition to ¢P" : 0 <?amit A Tamt < balance(?acc).

The example illustrates the usefulness of the notion of realizability. It provides a
tool for detecting functional descriptions that contain flaws that might not be obvious
to the modelers. Moreover as we will see soon, we can often rephrase the problem
of realizability of a description D € F to a well-understood problem in £ for which
algorithms already exist. We first turn to important other notion, of which realiz-
ability turns out to be a special case (in conformance as with the original notions in
mathematical logic).

Functional Refinement

Similar to the notion of satisfiability, we can look at the notion of logical entail-
ment, which is usually defined as follows: A formula ¢ logically entails a formula
1 iff every interpretation Z which is a model of ¢ (i.e., Z =, ¢) is also a model
of . Substituting interpretations by Web Services, formulae by functional descrip-
tions, and the satisfaction |=, by capability satisfaction =x. In a similar way we can
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define the notion of functional refinement that corresponds to the notion of logical
entailment: We use D; C D5 to denote that description D; is a functional refinement
of description D5 in A.

Intuitively speaking, D; = Dy means that D; is more specific than Ds: Every
Web service (no matter which one) that provides D; can also provide Ds. In other
words, D; must describe some piece of functionality that always fits the require-
ments D5 as well. However, Web Services that provide D» do not have to satisfy D,
and, therefore, a Web service that provides D; can do something more specific than
required by Ds.

For illustration, consider some Web service description Dy = (¢7"°, ¢?°** I F)
with [Fy = {?prs, ?acc} that advertises the ability to provide access credentials for
a particular Web site (http://theSolution.com). A domain ontology specifies that
if some Web site has some content and someone can access the Web site, then he (is
able to) know about the content. Furthermore, http://theSolution.com is a Web site
providing the ultimate answer to life (the universe and everything) and some constant
accessFee has a value less then 42.12

&+ account(?prs, Tace) A balance(?acc) > accessFee
#P°%" < balance(?acc) = balancey, . (?ace) — accessFee
A out(password(?prs, hitpy//theSolution.com))
AisValid(password(?prs, http://theSolution.com))
02 EV?ws, 7co, Tprs. content(Tws, 7co) A access(?prs, Tws) — knows(?prs, Tco)
content(httpy/theSolution.com, answer2Life), accessFee < 42

Vprs, tws. isValid(password(?prs, Tws)) — access(?prs, Tws))

Using our formal definition we now can examine another definition Dy =
(¢57¢, h°%" T Fy) with TFy = {?prs, ?acc} and check if it is a functional refine-
ment of the previous description.

#5¢  account(?prs, Pacc) A balance(?ace) > 100 ¢h°°t :knows(?prs, answer2Life)

This notion can beneficially be applied within functionality-based matchmaking.
For instance, let us assume that a person me is seeking for the ultimate answer to
life (knows(me, answer2Li fe)); me has an account acc123 with a current balance
of $174. Given this information (and our domain ontology 2) and considering the
specific input binding 3(?prs) = me, 5(?acc) = accl23, we can infer that any Web
service W that is advertised to provide capability D can serve for me’s purpose as
the precondition ¢4 is satisfied for the input 3. In consequence, for the specific
input [ the service delivers what is described by the postcondition ¢’2’05t; therefrom,
we can infer knows(me,answer2Life). However, since D; T Dy we know as
well, that any Web service W' that is advertised to provide capability D; is perfectly
suitable for me and his endeavor as well. The notion of functional refinement can

12 Note that we do not expect such knowledge in one central domain ontology, but in a number
of knowledge bases (generic, provider-, and requester-specific). For simplicity we assume
{2 has already been aggregated.
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then be used to preindex some set of Web service descriptions, such that for a given
request it is not necessary to consider all available descriptions but only a subset
identified by the preindexing.

Reasoning over Functional Descriptions

We now have defined two basic forms of semantic analysis in our descriptions. They
allow us to make use of the descriptions during the Web service life cycle. E.g.
Functional refinement can be used to automate Web service discovery. Since we
closely base our model on classical logic we are able to reuse existing inference
engines. In [116] we showed in more detail the relation between the definitions in
our formal model for Web Services and the underlying logic language used. This
gives us the following: If there is an algorithm or an implemented system that allows
us to determine logical entailment in £, then we can use the very same system or
algorithm to determine functional refinement.

8.5.3 Complete and Incomplete Descriptions

A common problem in the specification of functionality of computational entities that
can alter the state of the world is the so-called frame problem: Descriptions usually
describe positive information about what changes happen, however, to keep descrip-
tions simple and manageable, they do not explicitly state what does not happen. '
Incomplete descriptions can pose difficulties when processing such descriptions for
some higher-level task such as Web service discovery, since they are weaker (i.e.,
contain less information) as complete descriptions.

Complete descriptions can be achieved by adding supplementary descriptions
about all things that stay the same during the execution. Given a fixed model of
the world, such a completion process can be automated by adding so-called frame
axioms to the existing (incomplete) description. However, the manual addition of
such axioms is a tedious task for humans and should be avoided.

There are two options that one can take to resolve this problem. First, one can de-
cide to interpret all functional descriptions as being complete, and generate the frame
axioms automatically. This relieves the modeler from writing larger specifications,
but has the drawback that it is no longer possible to write down incomplete descrip-
tions on purpose (for instance, to express vague knowledge or minimal guarantees
about the behavior of some computational entity). Second, one can allow the modeler
to express explicitly as part of the description whether the description is complete or
not by means of a keyword. This way, we avoid the drawback of the first approach,
while keeping simplicity of descriptions for modelers.

Functional descriptions consist of various independent elements, which are de-
scriptions (of states) themselves. Again, we have some freedom in our approach,
which we need to decide upon. First, we can mark a capability description as a whole

13 In particular, one can expect that there are substantially many more things that do not
happen during the execution of a Web service than things that actually occur and can be
observed.
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as being complete or incomplete. Second, we can mark the single elements individ-
ually as being complete or incomplete. We will take the second approach, since it is
more fine-grained. As we will see in the next paragraph, for the basic language F
indeed both alternatives are the same.

As we explained above, completeness and incompleteness are relevant for all
descriptions that are related to what happens (or alternatively, what does not). This
is the case for postconditions (as well as executional invariants in the case of Fj,,,).
However, these properties are not relevant to description elements that specify when
(more precisely, under what circumstances) something happens, i.e. ,preconditions.

8.5.4 Summary

The model outlined provides a very fine grained model to describe Web Services
and goals. It requires significant skills to write those descriptions, but allows one to
capture a great deal of the behavior of a real world Web service. Still the model has
some limitations regarding what can be expressed or captured:

e Only finite processes can be described. A specific (inherent) limitation of pre-
condition and postcondition style descriptions is that they are based on the as-
sumption that there will be a final state of a computation, i.e., the computation
terminates. Although, this might be a valid assumption for a wide variety of Web
Services, it does not allow the specification of nonterminating components which
deliver senseful functionality though. An example in a technical system would
be the operating system of a computer which does not terminate or a Web service
that implements a clock and periodically sends the current time to a subscribed
client.

e Statements about intermediate states. .ike in common specification frame-
works, our model for the semantics of Web Services considers a Web service as a
set of atomic state changes, i.e., possible intermediate states during an execution
of a service are invisible for an external observer and cannot be referred to in a
formal specification. For planning purposes it might be relevant or useful to al-
low services to be described in a more detailed way, for instance, as a constraint
on possible execution paths.

For the same reason, it is not possible to express properties which do hold during
the whole execution of the service,'* which have been studied in dynamic logics
in the context of throughout modalities. As an example think about the property
of an account balance which must not be negative. Note that the formal model
presented can be adapted to this setting as well; this can essentially be achieved
by replacing pairs (s, s’) of states by sequences (so,...,Sy) of states in our
model and the formal definitions. An assertion language £ (used for expressing

1 Such properties P are different from invariants, since they are guarantees local to a service
rather than global properties of a system; Furthermore, they are different from strengthen-
ing preconditions and postconditions by P since throughout properties apply as well to any
intermediate state of an execution.
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preconditions and postconditions) which provides syntactic means to refer to
intermediate states of a service execution can exploit these richer semantic
structures.

8.6 Summary

In this chapter we have defined what we understand about service discovery, i.e., to
find similarities between the semantic description of a user’s desire (goal) and a ser-
vice offer (Web service). We also made clear that service descriptions will inherently
be incomplete, since otherwise they would duplicate the actual service functionality.
With this knowledge we have discussed various levels of abstraction that can be used
to describe Web Services:

e Keyword-based
Simple semantic descriptions (a service as a set of objects)
Rich semantic descriptions ( a serv as a state transition)

Obviously each level requires a different effort to model the actual descriptions.
While keyword-based discovery can often be employed on existing descriptions, a
rich description of a service requires a trained expert. On the other hand, a match
that has been detected by a keyword-based discovery engine provides only very little
potential for automation. In the end it depends on the concrete scenario that deter-
mines which level of description is suitable. For example, in order to find publicly
available Web Services, currently a keyword-based approach is still adequate, since
there is so little control over the publishers of the respective descriptions. On the
other hand, with the continuous increase of popularity for ontology languages on the
Web it might soon be reasonable to extend this approach with a classification system
based on lightweight ontologies. On the other hand, use cases in several research
projects have shown that richer descriptions of goals and services allow a complete
automation of discovery (within a restricted domain).
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Selection

This chapter discusses one important Semantic Web Service related task, namely,
selection. Selection is the process where one service which best satisfies the user
preferences is selected from the candidate services returned from the service discov-
ery stage. Before describing the service selection process itself, the first part of this
chapter will present our solution for modeling nonfunctional properties of services.
These descriptions are vital for selection, since scenarios such as “I want the cheapest
and fastest service,” involving price and execution time nonfunctional properties, are
very common. The last part of this chapter focuses on the service selection process
describing our approach with a strong emphasis on a core subprocess, namely, ser-
vice ranking.

9.1 Introduction

Service-Oriented Architecture (SOA) is becoming a widespread solution for
realizing distributed applications. Empowered by semantic technologies, this solu-
tion is evolving into what is known as semantically enabled SOA (SESA), bringing
more automatization and accuracy to various service-related tasks, such as discovery,
composition, and selection. Among these tasks discovery and selection are the build-
ing blocks of SESA search solution. As with most of the search products available
on the market, it is not only important to determine the relevant results given a user
request, but it is also extremely important to provide the results in a relevant order
and furthermore to select the ones which best fit the requirements. This is exactly the
purpose of the service selection process, which complements the discovery process.

While problems such as discovery [6, 138, 168, 205, 212] and composition [41,
176, 220] for Semantic Web Services have been intensively studied, the service selec-
tion and ranking problem has not attracted so much attention. However, we argue that
selection and ranking are important tasks in the overall service usage process and thus
they need to be treated accordantly. Any solution for these tasks is directly influenced
by how services are described. Three different aspects must be considered when de-
scribing a service: (1) functional, (2) behavior, and (3) nonfunctional. The functional



194 9 Selection

description contains the formal specification of what exactly the service can do. The
behavior description contains the formal specification of how the functionality of the
service can be achieved. Finally, the nonfunctional description captures constraints
on the previous two [44]. Among these aspects, nonfunctional properties need to be
addressed given the high dynamism of any SOA- and SESA-based system. Further-
more, these descriptions are highly relevant for many of the service-related tasks. For
selection especially, nonfunctional properties are fundamental input data that need to
be considered when building sorted sets of services and selecting the most relevant
ones. Our solution for modeling nonfunctional properties of services is an integrated
part of the Web Service Modeling Ontology (WSMO) [185] conceptual model and
its associated language Web Service Modeling Language (WSML) [53]. The same
representation formalism (WSMO/WSML) is used in our service selection solution,
but the solution itself is independent of the formalism used.

In this context, this chapter gives an overview of our service selection approach.
We start by describing in Sect. 9.2 our approach for modeling and attaching non-
functional properties descriptions to services. As mentioned already nonfunctional
properties are input data to be processed by the service selector. In Sect. 9.3 a de-
tailed description of the service selection is provided, with a focus on service rank-
ing as the core process in the overall selection process. Related work is discussed
in Sect. 9.4. Finally, Sect. 9.5 concludes this chapter and points out perspectives for
future research in the area of service selection.

9.2 Nonfunctional Properties

This section describes our solution for how to semantically describe nonfunctional
properties of services in WSMO/WSML. In our approach for service selection, non-
functional properties are fundamental means to describe selection criteria. Therefore,
providing an appropriate support for modeling these properties and attaching them
to services and goals is essential. The rest of this section is organized as follows.
First, Sect. 9.2.1 talks about the types of nonfunctional properties. The modeling of
these properties in WSMO/WSML is discussed afterwards in Sect. 9.2.2. Finally,
Sect. 9.2.3 proposes our solution for how to attach nonfunctional properties descrip-
tions to services, goals, and other elements in WSMO/WSML.

9.2.1 Nonfunctional Properties Types

In this section we discuss what are the types of nonfunctional properties. More pre-
cisely (1) we distinguish between two types of nonfunctional properties and (2) we
investigate what are the properties that belong to each of these two categories.

A closer look at nonfunctional properties shows that there are two categories into
which these properties can be divided: (1) annotations — which provide metadata
about any type of element description (service, goal, ontology, etc.) — and (2) non-
Sfunctional properties/quality of service — which are properties that strictly belong to
a service, properties other than functional and behavioral.



9.2 Nonfunctional Properties 195

Annotations, the first category of nonfunctional properties, are propertics which
can apply to all element descriptions, e.g., services, goals, mediators, and ontolo-
gies. They simply provide a way to annotate, to provide metadata about any type of
element description.

In this category we can include the following properties: contributor, cover-
age, creator, date, format, identifier, language, owner, publisher, rights, source, and
version.

Properties like subject, title, type, and description can be used to add extra in-
formation about the service description and the service itself. Additionally they can
contain information about the functionality of the service (e.g., service category).

The second category of nonfunctional properties are those properties which
strictly belong to a service and which are not functional and behavioral. We call
these properties nonfunctional properties/quality of service.

This category includes properties that describe the following aspects of a ser-
vice: locative, temporal, availability, obligation, price, payment, discounts, rights,
trust, quality of service, security, intellectual property, rewards, provider, reliability,
robustness, scalability, performance, and transactional.

It is important to mention that the set of nonfunctional properties from both cat-
egories is extensible. Service providers and requesters might add other properties to
annotations or nonfunctional properties/quality of service categories except the ones
mentioned above.

The properties from the last category, nonfunctional properties/quality of service,
are the properties most relevant for service selection and ranking tasks. In the rest of
this chapter we use the term “nonfunctional properties” to refer to the last category
of properties, namely, nonfunctional properties/quality of service.

9.2.2 Nonfunctional Properties Ontologies

An important challenge towards supporting nonfunctional properties of services is
the modeling of these properties. The approach we adopt is based on Semantic Web
technologies. More precisely we have defined a set of ontologies which provide non-
functional properties terminology. These ontologies are used afterwards when the
nonfunctional properties of services are specified. Ontologies which describe the
nonfunctional properties domain can be imported and concepts referring to nonfunc-
tional properties can be instantiated and used in the service descriptions. We have
defined a set of nonfunctional properties ontologies' in WSML based on the mod-
els provided in [164]. These ontologies provide formal conceptualization for Web
service nonfunctional properties like availability, security, etc.

The set of nonfunctional properties includes models for locative, temporal, avail-
ability, obligation, price, payment, discounts, rights, trust, quality of service, security,
intellectual property, rewards, provider, measures, and currency aspects. In the rest
of the section we briefly describe each ontology in terms of purpose and important
concepts:

! http://www.wsmo.org/ontologies/nfp/
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. Locative ontology. The locative ontology provides the locative concepts that are

needed for locative descriptions of a service. Using the terminology provided in
this ontology, one can model aspects such where a service can be requested
from and where it can be provided. The main concepts include LocativeEntity,
GeoLocation, Address, RouteSpecification, etc.

. Temporal ontology. The temporal ontology provides the temporal concepts that

are needed for time-related descriptions of a service. Different temporal gran-
ularities are considered. Using the terminology provided in this ontology, one
can express restrictions such as when the service can be requested, provided,
or queried for further information. The main concepts include TemporalEntity,
Timelnterval, TimePoint, TimeZone, TemporalDate, etc.

. Availability ontology. The availability ontology provides the terminology

needed to specify when, where, and to whom a service is available. Concepts
included are Availability and RequestAvailability.

. Obligation ontology. The obligation ontology provides the terminology needed

to describe various obligations which may be connected to service request and
provision. This includes, for example, pricing and payment obligations. Pricing
obligations are related to service providers and include information regarding re-
fund procedures, negotiability, etc. Payment obligations are related to service re-
questers, who have the obligation to pay for the service and include information
such as payment discounts, charge, etc. The main concepts include Payment-
Obligation, PricingObligation, etc.

. Price ontology. The price ontology provides the terminology needed to describe

properties of a service related to price. Different types of prices are modeled. The
main concepts include Price, AbsoutePrice, ProportionalPrice, RangedPrice,
MechanismAuction, etc.

. Payment ontology. The payment ontology provides the terminology needed

to describe how service requesters can fulfill their payment obligations. Pay-
ment and price ontology contain two views of the same thing but from different
perspectives. The main concepts include Paymentlnstrument, PaymentScheme,
CashInstrument, ElectronicCashType, etc.

. Discounts ontology. The discounts ontology provides the terminology needed

to describe various types of discounts. Discounts are dependent on how a re-
quester pays (e.g., early payment, type of payment instrument, etc.) and who
the requester is (e.g., age group, student, membership, etc.). The main concepts
include Discount, PayeeDiscount, StudentDiscount, MembershipDiscount, etc.

. Rights ontology. The rights ontology provides the terminology needed to de-

scribe rights granted to service providers or service requesters. The main con-
cepts include Right, RightOfWarranty, RightOfAccess, etc.

. Trust ontology. The trust ontology provides the terminology needed to describe

the trust aspect of a service. This model is directly influenced by other models
such as endorsement. The main concepts include Endorsement, InternallyMan-
agedEndorsement, and ExternallyManagedEndorsement.

Quality of service ontology. The quality of service ontology provides terminol-
ogy relative to a standard, an industrial benchmark, and/or a ranking schema.
The main concepts include Standard, Rating, Rated, Ranking, etc.



9.2 Nonfunctional Properties 197

11. Security ontology. The security ontology contains concepts such as Identifica-
tionRequirement, Confidentiality, EncryptionTechnique, IdentificationType, etc.
Two aspects are modeled: identification and confidentiality.

12. Intellectual property ontology. The intellectual property ontology provides the
concepts that are needed to describe intellectual property aspects. The main con-
cepts include IPRight, Trademark, Patent, Design, etc.

13. Rewards ontology. The rewards ontology includes concepts such as Accumu-
latedReward, AccumulatedPriceReward, RedeemableReward, etc.

14. Provider ontology. The provider ontology provides the basic terminology that
is required when talking about service providers. The main concepts include
Provider, ProviderMembership, Compliance, PartnerType, etc.

15. Measures ontology. The measures ontology provides a general measures ter-
minology. The main concepts include UnitOfMeasure, MeasurableQuantity,
Distance, etc.

16. Currency ontology. The currency ontology is a simple ontology that contains
the most used currencies.

9.2.3 Attaching Nonfunctional Properties to WSMO Elements

Once a model for nonfunctional properties is available, a second challenge that has
to be addressed is how to attach nonfunctional properties descriptions to WSMO
services and goals. This section provides our solution to this problem.

Nonfunctional Property Syntax

Nonfunctional properties of services or goals are modeled in a way similar to that
in which capabilities are currently modeled in WSMO/WSML [185]. A service is
an entity which provides a functionality (e.g., given a date, a start location, a des-
tination, and information about a client, a service can book a ticket for the desired
trip), but at the same time a service can be seen as an entity which provides one
or more nonfunctional properties (e.g., given a particular type of client, a service
charges a particular price, etc.). A simplified model of a WSMO service following
this approach is as follows:

Webservice

capability idCapability
precondition definedBy axiom1
postcondition definedBy axiom2
assumption definedBy axiom3
effect definedBy axiom4

nonFunctionalProperty idNFP
definition definedBy axiom5

Nonfunctional property blocks are delimited with the keywords nonFunc—
tionalProperties and endNonFunctionalProperties or short forms
nfp and endNfp. Following the keyword is a list of attribute values, which consists
of the attribute identifier, the keyword hasvValue, and the value for the attribute,
which may be an identifier or a variable symbol (or a set of such symbols). This is
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followed by an optional annotations block, an optional importsOntology block,
and an optional usesMediator block.

In case the value of the attribute in the name—value pair is an identifier, this
value may be an IRI, a data value, an anonymous identifier, or a comma-separated
list of the former, delimited with curly brackets. In case it is a variable symbol,
a axiom definition block should follow, in which the variable symbol is used. If
the axiom definition block is missing or the variable symbol is not used in it, then
implementations should issue a warning to the user. The axiom definition block starts
with the definedBy keyword followed by one or more logical expressions. The
language allowed for the logical expression differs per WSML variant. The logical
expressions are restricted to rule bodies for the Core, Flight, and Rule variants, and
to descriptions (i.e., tree-shaped formulas) for the DL variant.

Nonfunctional properties are defined using logical expressions in the same way
as preconditions/postconditions, assumptions, and effects are defined in a capability.
The terminology needed to construct the logical expressions is provided by nonfunc-
tional properties ontologies [207].

Nonfunctional Property Semantics

The central notion for nonfunctional properties is the value of the property. The non-
functional properties semantics described in this section defines the values of a spe-
cific nonfunctional property.

Given a logical expression logExp, a variable substitution # is a mapping from
free variables in logExp, denoted var(logExp), to identifiers: & : var(logExp) —
Id. With logExp6 we denote the application of & to logExp, i.e., the replacement of
every free variable x in logExp with 8(x).

Let {...,ontID,... . {...,nfp,...},...)» be a WSML Web service, goal, ca-
pability, interface, or mediator, where ontID is the set of imported ontologies and
nfp = (name, value, logExp), 7, is a nonfunctional property, let O be an ontology
map such that dom(9) = ontID, and let © be the set of variable substitutions such
that for every # € @ it holds that for all logExp € logExp, O = logExpf. Then,
an identifier ¢ € Id is a value of name if there is a @ € © such that i = 0(value).

Observe that if value is an identifier, the logical expressions function as a filter:
if all of the logical expressions are entailed by the ontologies, value is a value of the
property.

So, the logical expressions of the nonfunctional property can be seen as queries
over the ontologies, and the query answers are projected onto value.

9.2.4 Modeling Examples

For exemplification purposes we use services and goals from the SWS Challenge?
Shipment Discovery scenario. We have extended the initial scenario by defining
challenges that address discovery, selection, and ranking of services on the basis of

2 http://sws-challenge.org/
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nonfunctional properties descriptions. In the extended scenario,’ the set of shipping
services descriptions (i.e., Mueller, Racer, Runner, Walker, and Weasel) are aug-
mented by describing nonfunctional properties aspects such as discounts and oblig-
ations. The shipping services allow requesters to order a shipment by specifying the
sender’s address, the receiver’s address, package information, and a collection inter-
val during which the shipper will come to collect the package.

Listing 9.1 displays a concrete example of how to describe one nonfunctional
property of a service (i.e., Runner), namely, obligations. Owing to space limitations
the listing contains only the specification of obligations aspects without any func-
tional, behavioral, or any other nonfunctional descriptions of the service. In an in-
formal manner, the service obligations can be summarized as follows: (1) in case the
package is lost or damaged, Runners liability is the declared value of the package but
no more than $150 and (2) packages containing glassware, antiques, or jewelry are
limited to a maximum declared value of $100.

Listing 9.1. Runner’s obligations

namespace {_"WSRunner.wsml#",
runner _"WSRunner.wsml#”,
so _"Shipment.wsml#”,
dc _"http :// purl.org/dc/elements/1.1#",
pay _"http :// www.wsmo.org/ontologies/nfp/paymentNFPOntology#”,
wsml http :// www.wsmo.org/wsml/wsml—syntax/”,
obl _"http :// www.wsmo.org/ontologies/nfp/obligationsNFPOntology.wsml,
up -"UpperOnto.wsml#”}

Webservice runnerService
nonFunctionalProperties
obl#Obligation hasValue ?0
definedBy
/l'in case the package is lost or damaged Runners liability is
//the declared value of the package but no more than 150 USD
hasPackageLiability(?package, 150):—
?package[so\#packageStatus hasValue ?status] and
(?status = so\#packageDamaged or ?status = so\#packagelLost) and
packageDeclaredValue(?package, ?value) and ?value>150.

hasPackageLiability(?package, ?value):—
?package[so\#packageStatus hasValue ?status] and

(?status = so\#packageDamaged or ?status = so\#packagelLost) and
packageDeclaredValue(?package, ?value) and

?value =< 150.

//'in case the package is not lost or damaged Runners liability is 0
hasPackageLiability(?package, 0):—

?package[so\#packageStatus hasValue ?status] and

?status = so\#packageDamaged and ?status != so\#packageLost.

/I packages containing glassware, antiques or jewelry
/lare limited to a maximum declared value of 100 USD
packageDeclaredValue(?package, 100):—
?package[so )\ #containesltemsOfType hasValue ?type, so\#declaredValue hasValue
?value] and
(?type = so\#Antiques or ?type = so\#Glassware or ?type = so\#Jewelry) and
?value>100.

3 http://wiki.wsmx.org/index.php?title=Discovery:NFPUseCase
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packageDeclaredValue(?package, ?value):—
?package[so )\ #containesltemsOfType hasValue ?type, so\#declaredValue hasValue
?value] and
((?type = so\#Antiques and ?type != so\#Glassware and ?type != so\#Jewelry) or
?value<100).

capability runnerOrderSystemCapability
interface runnerOrderSysteminterface

According to the model defined in Sect. 9.2.3, Runner’s obligations are expressed
as logical expressions, more precisely as logical rules in WSML. In a similar way
other nonfunctional properties can be described for any of the services in the sce-
nario. Further on, consider the concrete goal of shipping one package (GumblePack-
age) to a specified address (GumbleAddress) of a specific receiver (Gumble). A goal
in WSMO is described in a similar manner to a Web service. Our concrete goal is
specified in Listing 9.2.

Listing 9.2. Goal description

namespace {."Goal.wsml#”,
so -"Shipment.wsml#”,
dc _"http :// purl.org/dc/elements/1.1#",
wsml “http :// www.wsmo.org/wsml/wsml—syntax/”,
obl _"http :// www.wsmo.org/ontologies/nfp/obligationsNFPOntology.wsml,
up -"UpperOnto.wsml#”,
pref _"Preferences.wsml#"}

goal Goall
annotations
up#order hasValue pref#ascending
up#nfp hasValue obl#Obligation
up#top hasValue "1”
endAnnotations

capability requestedCapability
postcondition
definedBy
?order[
so#to hasValue Gumble,
so#tpackages hasValue GumblePackage
] memberOf so#ShipmentOrder
and
Gumble[
so#firstName hasValue "Barney”,
so#lastName hasValue "Gumble”,
so#taddress hasValue GumbleAddress
] memberOf so#Contactinfo
and
GumbleAddress|
softstreetAddress hasValue "320 East 79th Street”,
so#city hasValue so#NY,
so#tcountry hasValue so#US
] memberOf so#Address
and
GumblePackage[
so#length hasValue 10
so#width hasValue 10
so#height hasValue 10
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so#weight hasValue 10

so#declaredValue hasValue 150

so#tcontainesltemsOfType hasValue so#Glassware
] memberOf so#Package.

User preferences are part of the goal. For example, the user can specify which
nonfunctional property will be used as a ordering dimension during the selection and
ranking process. In this case the ordering dimension is the obligations nonfunctional
property (up#nfp hasValue obl#Obligation). Furthermore, the user can
specify how the results should be ordered (i.e., ascending or descending), in this case
ascending (up#order hasValue pref#ascending), the importance of the
nonfunctional properties, e.g., for a user the price is less important than the execution
time, and the number of best services to be selected (up#top hasvValue "1").
The background knowledge used during the selection and ranking process is usually
extracted from the capability section of the goal.

9.3 Selecting Services

As mentioned before, selection is the process where one or more services which
best satisfy the user preferences are selected from the candidate services returned
from the service discovery stage. As selection criteria, specified by the user, various
nonfunctional properties such as service level agreements, quality of services, etc.
can be obtained from the goal description. On the service side the requested non-
functional properties values are cither directly specified in the service description or
are provided (computed or collected) by a monitoring tool. Nonfunctional proper-
ties specified in goal and service descriptions are expressed in a semantic language
(i.e., WSML), by means of logical rules using terms from nonfunctional properties
ontologies, as exemplified in Sect. 9.2.4.

In this section we describe our solution for service selector. We see selection as
a two-step process. First the list of services identified as fulfilling a user’s request
during the discovery process are order according to specified preferences. This step,
called “ranking,” is discussed in Sect. 9.3.1. The second and last step, much simpler
than the first one, is simply about selecting the top k candidates from the ordered list
of services built in the previous step. This step is briefly described in Sect. 9.3.2.

9.3.1 Ranking

An integrated part of the selection is the ranking process, which generates an order
list of services out of the candidate services set. This section provides some back-
ground notions and defines what we understand by ranking in, discusses several types
of ranking, and describes our ranking solution.

Background

The problem of ranking services on the basis of their nonfunctional properties can
be seen as a particular implementation of a much more general problem investi-
gated in mathematics. Research around this problem gave birth to a special branch of
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mathematics called order theory [86]. Order theory is a branch of mathematics which
studies various kinds of relations that capture the intuitive notion of mathematical
ordering. We introduce a set of definitions from order theory which are afterwards
used to formally describe the problem of ordering in general, and thus the problem
of ranking services on the basis of their nonfunctional properties in particular.

In order theory the notion of order is very much related to the notion of relation.
More precisely orders are a special type of relation: binary relations.

Definition 9.1 (partial order). A partial order <p on a set P is a binary relation
on P having the following properties: (1) <p is reflexive: a <p a, Va € P; (2)
<p is antisymmetric: ifa <p band b <p a then a = b, Ya,b € P; and (3) <p is
transitive: if a <p b; andb <p cthena <p ¢, Ya,b,c € P.

A set on which a partial order is defined is called a partial order set, or poset.

Definition 9.2 (total order). A partial order <p on a set P is a total order if Va,
b € Pand a # b the following holds: a <p borb <p a.

Given the above definitions the problem of ranking could be defined in a formal
way as a function as shown below:

Definition 9.3 (ranking). Given a set P of objects and an partial order relation <p
on this set, a ranking function f can be defined as follows: f(P,<p) = R, where R
is the set of objects containing the same elements as P (R = P) and 3s a sequence
s(1,2,...,|R|) — RsuchthatVi,j € {1,2,...,|R|}, withi <= j = s(i) <p s(j).

One may have noticed that defining an order relation over a set of elements is
fundamental when describing the ranking task. This implies that the elements of the
set need to be quantifiable and comparable.

Service Ranking Types

Service ranking remains an open and controversial problem in terms of both social
and technical aspects. From a social point of view an honest and fair mechanism is
required. Intuitively, a self-ranking mechanism is unreliable since service providers
tend to overadvertise their services. A third-party ranking mechanism seams a bet-
ter solution when considering reliability aspects. Most of the existing solutions fol-
low this approach. However, a single point of failure might affect such solutions.
A distributed solution which integrates feedback from users is therefore required.
Involving the human users in the ranking process, by means of social networking
approaches such as tagging, could improve the accuracy of the ranking result. Fur-
thermore, principles extracted from social models could be applied when defining
solutions for service ranking. We call the ranking process which considers all the
abovementioned types of information social ranking.

From a technical point most of the current approaches [140, 181] consider
only numerical or keyword values associated with the entities to be ranked. Such
approaches are less flexible and often less accurate since an ontological representa-
tion of nonfunctional properties aspects used along with logical expressions attached
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to goals and Web Services descriptions will allow a semantic ranking mechanism to
provide more accurate results.

Additionally an appropriate multicriteria ranking mechanism which considers
multiple nonfunctional properties dimensions is required. In the case of multiple-
criteria ranking, the most used approach is to use a matrix-based solution and to
compute afterwards a weighted average over the nonfunctional properties of each
service [221]. However, other solutions for multicriteria ranking which provide bet-
ter results in terms of precision and recall could be developed. Since users usually
express their preferences in terms of multiple nonfunctional properties, we plan to
investigate the multicriteria ranking problem in order to provide more accurate so-
lutions. Additionally, ranking with missing or incomplete specified nonfunctional
properties needs to be addressed.

Finally, specification and reasoning with context and preferences is required
when ranking services in a given situation, context-based ranking. To our knowl-
edge most of the service ranking approaches do not consider context information.
The need for such a support is illustrated by the following situation. Let us consider
that a requester wants to receive the list of services fulfilling the goal ordered by
price. She/he is looking for the cheapest one. Even when the ranking system is pre-
cise in building the ranking list according to the price dimension, this list could be,
however, wrong if the context information is not considered. It might be the case
that services that are ranked higher in the list are not available for invocation at that
moment in time (context) and thus keeping them in the in the ranked list would make
no sense. Therefore, context and relations between nonfunctional properties must
be considered during ranking. Models that capture relations between nonfunctional
properties and models for context are also required to fill the gap.

Ranking Solution

In [81] a categorization of ranking approaches is provided based on two dimensions:
(1) local or global, depending on whether local or global knowledge is needed, and
(2) absolute or relative, depending on whether the measurements is of absolute scope
or refers to a particular client request. Considering these dimensions a set of four
types of ranking can be defined: (1) local and absolute, (2) local and relative, (3)
global and absolute, and (4) global and relative. The popular PageRank ranking ap-
proach of Google belongs to the global and absolute category. It is absolute because
ranking of the entire collection is not done on the basis of each client request and it is
global because the knowledge required for ranking is distributed in the entire collec-
tion. On the other hand, ranking based on nonfunctional properties is seen as being
local and relative since the ranking is done according to the user query (relative) and
local knowledge is sufficient to perform the ranking (local). Our ranking mechanism
for services based on their nonfunctional properties will be developed in the same
context:local and relative. This fits well with the SEE/WSMX environment [95] in
which the ranking mechanism will be integrated.

The approach we take to solve the problem of ranking services on the ba-
sis of their nonfunctional properties is to develop ranking algorithms along two
dimensions: (1) the level of abstraction, i.e., keywords, semantic descriptions, and
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Figure 9.1. Ranking engine space

(2) features derived from the problems addressed, i.e., singe-criteria ranking, mul-
ticriteria ranking, and social ranking. Figure 9.1 presents the ranking engines/algo-
rithms which we identified as part of our ranking solution.

Once algorithms that cover the ranking engine space in Fig. 9.1 are available,
they need to be integrated such that given a user preference the most appropriate en-
gine or combination of engines is used. The approach we take here is to develop a
ranking framework similar to the one developed in [115] for service discovery. This
framework will handle incoming requests from the user considering the nonfunc-
tional requirements specifications and will manage the internal workflow between
the ranking engines. A simple workflow could be, for example, to use the ranking
based on specified values of nonfunctional properties first and afterwards to perform
the semantic ranking. Similar or more complicated workflows that include one or
more ranking engines will be handled by the framework. Additionally the framework
will provide input/output data for the ranking engines taking care that nonfunctional
properties values are normalized and compared on the same scale.

Since the ranking operation is usually time-consuming, an appropriate support
for reducing the processing time is required. A feasible approach is to develop index-
ing and caching mechanisms. Note that such an index mechanism is built over the
values of nonfunctional properties described in the service descriptions or collected
by a monitoring system. By maintaining index structures on nonfunctional proper-
ties, the time to retrieve and rank services on these properties will decrease. An ef-
ficient mechanism in terms of time and resource consumption is even more required
in the context of semantic ranking. Therefore, precomputing semantic matching be-
tween nonfunctional properties specifications of registered services and possible
nonfunctional requirements of the user is needed. In the same context a caching
mechanism could speed up the ranking process by caching ranking results after a
request has been processed. Later on, the cached results could be considered when a
request similar to a previously answered request is received.
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As part of our solution we have addressed so far only two aspects of ranking ser-
vices as discussed in the “Service Ranking Types” section, namely, semantic ranking
and multicriteria ranking. Nonfunctional properties of services and goals used in the
prototype are semantically described as presented in Sect. 9.2.4. The logical rules
used to model nonfunctional properties of services are evaluated, during the ranking
process, by a reasoning engine. Additional data is required during the rules evalu-
ation process. This data represents mainly user preferences and includes (1) which
nonfunctional properties the user is interested in, (2) the level of importance of each
of these nonfunctional properties, (3) how the list of services should be ordered,
i.e., ascending or descending, as well as (4) concrete instances data extracted from
the goal description. The nonfunctional properties values obtained by evaluating the
logical rules are sorted and the order list of services is built.

The algorithm for multicriteria ranking based on nonfunctional properties is pre-
sented in Algorithm 1. First, a set of tuples containing nonfunctional properties and
their associated importance is extracted out of the goal description (line 3). Consider-
ing the goal example provided in Listing 9.2, the list contains only one nonfunctional
property, namely, obligations. If no importance is specified, the default value is con-
sidered to be 0.5, which specifies a moderate interest in the nonfunctional property.
The importance is a numeric value ranging from O to 1, where 1 encodes the fact that
the user is extremely interested in the nonfunctional property and 0 encodes the fact
that the nonfunctional property is not of interest for the user. Further on, instance
data from the goal is extracted (line 4) and a knowledge base is created. In our exam-
ple the extracted instance data contains information about the receiver, the package,
and the destination address. The last step in extracting relevant information for the
ranking process is to identify how the results should be ordered, i.e., ascending or
descending (line 5).

Once the preprocessing steps have been done, each service is checked to deter-
mine if the requested nonfunctional properties specified in the goal are available in
the service description. In the case of a positive answer the corresponding logic rules
are extracted (line 11) and evaluated (line 12) using a reasoning engine which sup-
ports WSML rules (e.g., MINS*, KAON2, or IRIS®). A quadruple structure is built
(lines 13 and 16) containing for each service and nonfunctional property the com-
puted value and its importance. An aggregated score is computed for each service by
summing the normalized values (line 24) of the nonfunctional properties weighted
by importance values (line 25). The results are collected in a set of tuples, where each
tuple contain the service ID and the computed score (line 27). Finally the scores val-
ues are sorted according to the ordering sense extracted from the goal and the final
list of services is returned (line 29).

* http://tools.deri.org/mins/
® http://kaon2.semanticweb.org/
6 http://sourceforge net/projects/iris-reasoner/
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Data: Set of services Sse,, Goal G.
Result: Order list of services Lger.

1 begin

2 £2 +—— @, where 2 is a set of tuples [service,scorel;
3 A = extract NFPs(G), where A is a set of tuples [n fp, importance];
4 G Know = extractInstances Knowledge(G);

5 d = extractOrderingSense(G);

6 B «—— 1, is a set of quadruples [service,n fp,n fpvalue,importancel;
7 for s € Sger do

8 for nfp € Ado

9 imp = lambda.getImportance(nfp);

10 if nfp € s.nfps then

11 rule = extract(nfp,s);

12 nfpvalue = evaluate Rule(rule, G know);
13 B =B Uls,nfp,nfpvalue,imp);

14 end

15 else

16 6:6U[57nfp7070];

17 end

18 end

19 end
20 for s € S do
21 scores =0;
22 for nfp € 3do
23 nfpvalue = 3.get NF PValue(s,nfp);
24 nfpvaluemaee = maz(B.npf);
25 scores = scores + imp * n—f’;%;
26 end
27 2= 0U]s,scores];
28 end
29 Lger < sort(£2,d);
30 end

Algorithm 1: Multicriteria ranking

9.3.2 Selection

Once the ranking process has been completed, as a final step of the selection process
the best candidate service or best candidate services are selected. This process is
much simpler than the previous process, service ranking. It simply selects the top
k services from the order list returned in the previous step. The k value is specified
by the user in the goal description by means of an annotation. Considering the goal
example provided in Listing 9.2, the k value is 1 (up#top hasvValue "1").In
case no such value is provided in the goal description, the default value is 1, meaning
that the first service in the list is selected.
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9.4 Related Work

The terms “selection” and “ranking” are used in many areas of computer science, in-
cluding information retrieval [187] and areas connected to it such as classical search
engines, and additionally in may new emerging areas such as Web Services, Se-
mantic Web, and Semantic Web Services. In this section we briefly point out some
relevant approaches for service selection and ranking from these research areas.

In information retrieval [187] the problem of ranking documents given a query
is classically addressed using statistical models. The query and the documents that
need to be ranked are basically lists of terms that are represented as vectors in a
vector space model [133]. Statistical information such as terms frequency, document
length, etc. is used to compute the similarity degree of the document and the query,
and is implicit the document’s rank. As a similarity function, cosine similarity is the
most used. Other models for representing documents and queries can be used as well,
e.g., latent semantic indexing [64] model and probabilistic models [143].

One approach which bases its tremendous success on a ranking algorithm is that
of Google.” Within the past few years, Google has become probably the most utilized
search engine worldwide. A decisive factor in Google’s success, besides the high
performance and ease to use and simple interface, is the superior quality of the search
results compared with those of other search engines, which stems from an interesting
ranking algorithm called PageRank [165].

PageRank is an algorithm for computing a Web page score on the basis of the
graph inferred from the link structure of the Web. The basic idea behind PageRank
is that the number of inbound links for a document measures its general importance.
Hence, a Web page is generally more important, if many other Web pages link to
it. However, not only their number counts, but also their importance. This model
applies globally and the rank of a Web page is always determined recursively by
the PageRank value of other Web pages. Given a Web page p, its PageRank value is
computed as follows:

In the above formula d is a dumping factor which is usually set to 0.85. It basi-
cally represents the probability that a random user will get bored and select a different
page. p;, j = 1...N are the pages under consideration, M (p;) is the set of pages that
link to p;, L(p;) is the number of links coming from page p;, and N is the total
number of pages.

One can see PageRank as a specific type of ranking based on nonfunctional prop-
erties, in this case the nonfunctional property being the importance, or the reputation,
of the Web page being ranked.

7 http://www.google.com
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Although [221] does not focus directly on the problem of selection and ranking
of services on the basis of their nonfunctional properties/quality of service values,
this approach is interesting since it uses a multicriteria computation model to deter-
mine the importance of a service, which is afterwards used in the selection process.
This is just one of the steps of a composition mechanism. At the execution time for
each particular task of the composite service, the system collects the quality of ser-
vice values of the services that can fulfill the task (candidate services). Out of these
quality of service values quality vectors are built. By merging the quality vectors of
the candidate services, one creates a quality matrix, in which each row corresponds
to a service and each column corresponds to a quality of service criterion. The sim-
ple additive weighting method, introduced in the context of multi multiple criteria
decision making [108] research, is used to select the optimal Web service. Using this
method, one computes a set of scores for each service, on the basis of which the
services can be ranked afterwards.

In [214] a quality of service based Web service selection and ranking mechanism
with trust and reputation management support is presented. The solution is devel-
oped under two basic assumptions: (1) users and services have a probabilistic be-
havior, which means there is a difference between the quality of service values they
obtain and the quality of service values they report, which follows a probabilistic
distribution, and (2) there exit a few trusted third parties, which are usually well-
known agents that provide trusted measurements of quality of service parameters.
The quality of service values are collected from four sources: user feedback, service
descriptions, trusted agents, and predictions.

9.5 Summary

In this chapter we discussed one core task for any service-oriented system, namely,
service selection. First we described our solution to a directly connected problem,
namely, the modeling and attaching of nonfunctional properties descriptions to ser-
vices and goals. A set of ontologies [207] in WSML based on the models provided
in [164] were created to provide formal conceptualization for services’ nonfunc-
tional properties such as obligations, availability, security, etc. Furthermore, we dis-
tinguished between two categories of nonfunctional properties and we provided the
means to attach nonfunctional properties descriptions to services and goals as logi-
cal rules. In the second part of the chapter we detailed the service selection solution
with a special focus on service ranking as a core process. The ranking mechanism
uses logical rules describing nonfunctional properties of services and evaluates them
using a reasoning engine. As a last step it builds an ordered order list of services on
the basis of values computed during the evaluation step.

As future work we plan to refine the set of existing nonfunctional properties on-
tologies to capture aspects such as relations between nonfunctional properties. Also
left as future work is the full specification and implementation of a ranking frame-
work which integrates various types of ranking, i.e., single-criteria ranking, multi-
criteria ranking, context-aware ranking, and social ranking. Further on, a set of open
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issues and improvements need to be addressed and integrated with the current selec-
tion solution. These include, but are not limited to, how to integrate nonfunctional
properties values called by monitoring tools with the service selector, how to predict
nonfunctional values of services, which are the best solutions to collect and incorpo-
rate user feedback, and last but not least to consider trust and reputation issues.
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Mediation

An intense research activity regarding the Semantic Web, Web Services, and their
combination, Semantic Web Services, has been going on during the last few years.
But only the semantic descriptions attached to data or to the Web Services deployed
using today’s technologies do not solve the heterogeneity problem that may occur
owing to the distributed nature of the Web itself. As such, the heterogeneity existing
in representing data, in the multitude of choices in representing the requested and the
provided functionalities, and in the differences in the communication patterns (pub-
lic processes) are problems that have to be solved before we are able to fully benefit
from the semantically enabled Web and Web Services. Considering that these prob-
lems cannot be avoided, dynamic mediation solutions that fully exploit the semantic
descriptions of data and services are required.

This chapter is formed of two main parts: the first describes the main techniques
for data mediation in a semantic environment, while the second focuses on behavior
mismatches and process mediation.

The data mediation scenario to be analyzed in this chapter is the automatic trans-
formation of the data part of heterogeneous messages exchanged in peer-to-peer
(P2P) communications. One of the main assumptions in a semantic environment
is that all manipulated data is described in terms of ontologies. As such, data to
be mediated represents in fact ontology instances and the automatic mediation task
relies on ontology mappings created during design time.

While data mediation solutions are mandatory in heterogeneous contexts, they
are not enough to enable communication when mismatches at the behavioral level are
also present. Solutions towards behavior mediation, where behavior is represented
as processes, are discussed and a classification of solvable/unsolvable mismatches is
provided.

10.1 Preliminaries

Data heterogeneity remains a problem even in the context of Semantic Web and
Semantic Web Services. That is, different conceptualizations of the same domain
(i.e., ontologies) might be used in describing the data used by various parties, making
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the interchange of such data impossible. The major advantage compared with pre-
vious attempts in solving data mismatches [139, 147, 162] is that ontologies better
describe the data to be mediated [161]. As such, they offer the means to solve the
heterogencity problems at the schema level and to apply the findings to the actual
data during run-time processes. The schema mapping process can fully benefit from
the semantic descriptions present in the ontologies, changing from a manual and
error-prone task to a semiautomatic one (machine assisted) or even an automatic one.

Semantic Web Services rely on ontologies to semantically describe their inter-
faces and capabilities. As a consequence the heterogeneity problems introduced by
different ontologies modeling the same domain are inherited in this context as well.
In order to enable service interaction, communication, and interoperation, ontology-
based data mediation is a prerequisite of any framework dealing with Semantic
Web Services. Mappings created between ontologies have to be exploited during
the actual invocation of the Web Services and applied to specific data that has to be
interchanged.

As mentioned already, heterogeneity problems occur both at the data level as
well as at the behavioral level of business logics, message-exchange protocol, and
Web service invocation. Process mediation is one of the crucial points on the road
towards establishing new, ad hoc cooperation on the Web between various business
partners. If semantically enhanced data enables dynamic solutions for coping with
data heterogeneity, semantically enhanced Web Services can do the same for be-
havioral heterogeneity. Such a mediator acts on the public processes of the parties
involved in a communication and adjusts the bidirectional flow of messages to suit
the requested/expected behavior of each party.

10.1.1 Layers of Mediation

Mediation can be approached on two different layers: the implementation layer and
the specification layer. The first one offers concrete solutions for a given heterogene-
ity problem, providing the actual component able to solve that problem. The specifi-
cation layer covers the semantic descriptions of mediators. Semantic techniques need
to be employed to create high-level descriptions, called semantic mediation patterns,
which rely on the functionality offered by the mediation services. A semantic medi-
ation pattern prescribes a way of using several mediation services, no matter if they
are concerned with data mediation or process mediation. As a consequence, a me-
diation service can be associated with multiple semantic mediation patterns and a
semantic mediation pattern will point to at least one mediation service. As ontolo-
gies are used to semantically describe the emantic mediation patterns, extra semantic
information can be provided by semantically describing the mediation services as
well (i.e., they become in this way semantic mediators; Fig. 10.1). These seman-
tic mediators are nothing other than ontological entities, which can be described in
a similar manner as prescribed by the Web Service Modeling Ontology (WSMO),
presented in Chap. 3.
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Figure 10.1. The layering of semantic mediation patterns, semantic mediators, and mediation
services

As such, the specification layer can be seen as being composed of two sublay-
ers: the semantic mediation patterns layer and the semantic mediators (description)
layer.

This chapter will mainly focus on the actual mediation services for data and
process mediation, as further described in Sects. 10.2 and 10.3. The other two levels
have already been covered in Chap. 3, as the WSMO mediators are nothing other
than semantic mediator patterns, while any mediator described on the basis of these
WSMO mediators is a semantic mediator (for example, a specific coMediator be-
tween two given ontologies O1 and O2).

10.1.2 Mediation’s Role in Semantically Enabled Service-Oriented
Architecture

This section explains in more detail why mediation and the mediation tool are an
important part in the semantically enabled service-oriented architecture (SESA). For
this, we will analyze the problem from two perspectives: the definition of the ele-
ments used in SESA and the actual implementation.

Elements’ Definitions

As previously specified in this book, every element considered by SESA has to have
a semantic description. Three of the four main components (ontologies, goals, and
Web Services) have in their definition the usesMediator attribute, whose range
is defined by the fourth main modeling element, the mediators. As described in
Chap. 3, there are four types of mediators to be considered, depending on the type of
elements they link or bridge, namely, ontology to ontology mediators, goal to goal
mediators, Web service to Web service mediators, and Web service to goal mediators.
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But all these mediators (semantic mediation patterns) are only descriptions of what
a mediator can do; they do not represent the actual mediation description between
two given elements, or the actual service that can solve a given heterogeneity prob-
lem. For describing the mediator between two entities a specific semantic mediator
has to be defined, which in turn should refer to specific components, by the attribute
hasMediationService.

Relationship with Other Component

Both the discovery and the selection components deal with the semantic descriptions
of the goals and Web Services, performing several operations based on these descrip-
tion. If the ontologies used for specifying these elements differ (even if we consider
minor differences, like the minimal age for obtaining a driving license being consid-
ered in one greater than 17 and in the other greater than or equal to 18), those two
components need the services of data mediators in order to fulfill their functionalities.

Service Invocation

SESA is meant to provide automatic support for every phase of service invocation,
from the moment a requester publishes a certain goal until that goal is fulfilled. One
important aspect is the communication between the service requester and the service
provider. For having a truly automatic communication, with no human intervention,
tool support for solving any behavioral heterogeneity problems between the requester
and the provider of a service need to be available.

10.2 Ontology-Based Data Mediation

Ontologies can offer substantial support towards the automation of data mediation.
Even if there will always be a trade-off between the degree of automation and the
level of accuracy of the data mediation process, semantics can help combine semi-
automatic methods with automatic techniques in order to obtain flexible and robust
solutions.

Ontologies semantically describe the data to be mediated, representing in fact a
schema for this data. As a consequence, it is possible to distinguish between a design-
time and a run-time phase, where the first represents the support (a prerequisite) for
the second. At design time the mappings between ontologies have to be established
(i.e., between the source and the target ontologies), while at the run-time phase these
mappings are applied in concrete scenarios.

In the design-time phase semiautomatic techniques are used, that is, the human
domain expert is required to perform a set of validations and choices based on ma-
chine findings, in order to ensure that the mappings between the source and the target
ontologies are correct. It is important to note that since these mappings are created
on the ontology level (i.e., schema level), they are created only once and they can be
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used multiple times with no other updates (as long as the ontologies do not evolve).
The mappings are applied during run time on concrete data multiple times without
any human intervention, in an automatic manner.

This chapter provides a description of various ontology mapping techniques that
can be used as semiautomatic approaches for creation of mappings. It also defines
mechanisms that can be used in applying these mappings in the instance transforma-
tion scenario. We use the approach presented in [150] to exemplify the most com-
mon strategies and the methodologies behind ontology mapping and a data mediation
run-time engine. While some of the methods presented in the rest of this chapter are
specific to this particular work, most of them can be found in several forms in other
approaches as well.

10.2.1 Data Mediation Scope and Scenario

The scope of the ontology mapping approach (design-time phase) in the SESA con-
text can be defined in terms of the evaluation criteria proposed in [159]. These criteria
are:

e Input requirements: What are the elements of interest from the source ontolo-
gies, which of them are required, what knowledge representation paradigm is
supported.

Level of user interaction: How are the results presented to the user.

Type of output: What is the output of the mapping process.

Content of output: Which elements of the input ontologies are correlated in the
output.

They form a set of pragmatic criteria which help in identifying a set of require-
ments for ontology mapping from the user’s perspective. In this respect, the SESA
reference implementation for ontology mapping [150] is characterized by the fol-
lowing features:

Input requirements: There are two ontologies used as inputs for the mapping
process: the source and the target ontology. The ontologies can be expressed
using Web Service Modeling Language' (WSML), and the focus is on con-
cepts, attributes, and instances. The mappings are created on the schema level,
so the concepts, the attributes, and their types are required for the mapping
process, while the instances are optional, mainly used in adding conditions on
the mappings.

Level of user interaction: In the context of Web Services the correctness of map-
pings is vital. As a consequence, a semiautomatic approach with 100% accuracy
is preferred to an automatic approach where the accuracy can vary. This semiau-
tomatic approach offers support to the human user during the process in the form
of suggestions and guidance. The user validation and the tool support are part of

! Even if the targeted ontology language is WSML, ontologies expressed in some other lan-
guages could be potentially used if appropriate wrappers are provided.
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an iterative and interactive process where decisions are taken on the basis of the
tool support and the tool support improves on the basis of the user’s decisions.

Type of output: WSMO and Semantic Web Services are based on a set of principles
that includes strict decoupling and centrality of mediations [184]. Considering
this, neither the input ontologies are altered in any way, nor is a merged ontology
created. In both cases, the parties involved in the interaction would have to adjust
their information systems or even the business logics to support the new version
of their ontology. As these types of solutions are not feasible (because of, e.g.,
high costs and latency) in a dynamic environment such as the Web, an align-
ment between the two ontologies is created, in such a way that both the source
and the target ontologies remain unchanged. This alignment can consist of map-
pings either expressed in a specialized mapping language (such as the Abstract
Mapping Language described in [188]) or expressed directly in the ontologies’
representation language.

Content of output: The alignment that is generated between the two source ontolo-
gies contains a set of mappings that capture the semantic relationships between
the two ontologies. If the mappings are expressed in an abstract language, an ex-
tra step is needed to associate a formal semantics to these mappings, in respect
to the mediation scenario they are used in.

In the SESA reference implementation it has been decided that the created align-
ment should consist of abstract mappings and not of rules created in a particular
ontology representation language. There are several reasons behind this decision:

Reusability: The same set of mappings can be used in various mediation scenarios.
A grounding mechanism can be later applied and a formal semantics can be
associated with these mappings in order to suit the targeted scenario.

Manageability: If the ontologies are evolving, the set of mappings existing between
them has to be updated as well. If mappings are represented as rules in a particu-
lar ontology language, the special features and peculiarities of this language are
reflected in the rules as well. By this, the management of the mappings becomes
extremely difficult because there are two types of correspondences that have to
be maintained at all time:

1. The correspondences between those entities in the ontologies that have
changed and the mapping rules

2. The correspondences between these entities and the semantics of the rules
themselves

Since in the reference approach presented in this chapter, the formal semantics

is associated later with the mappings, the one in charge of updates has to han-

dle only the first type of correspondence. The second type of correspondence

is automatically enforced when the grounding is applied to the already updated

abstract mappings.

In the SESA context we choose to exemplify the usage of design-time-created
mappings in one of the most common mediation scenarios, namely, instance trans-
formation. The instance transformation scenario can be summarized as follows. Dif-
ferent business actors use ontologies to describe their internal business logic, and
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more important for us in this case, their data. Each of these actors uses its own in-
formation system (e.g., a SESA-based information system) and tries to interact with
other actors of other (probably more complex) business processes (Fig. 10.2). There
is need for a specialized service able to transform the data expressed in terms of
a given ontology (the source ontology) into the terms of another ontology (target
ontology), allowing the two actors to continue using their own data representation
formats.

Being part of a run-time process, the instance transformation has to be performed
completely automatically on the basis of the already existing mappings created on
the schema level during the design-time phase.

10.2.2 Ontology Mapping

The process of creating mappings represents one of the most important phases in
a mediator system. It is a design-time process and as mentioned before in order
to obtain high accuracy of the mappings the human user has to be present in this
process. By offering a set of strategies and methods for creating these mappings, one
can reduce this usually error-prone and laborious process from a manual task to a
truly semiautomatic one.

The mapping process (i.e., the design-time phase of the mediation process) basi-
cally requires three types of actions from the domain expert [148]:

1. Browse the ontologies: The domain expert has to discover the ontology elements
he/she is interested in. This step involves different views of the input ontologies,
and strategies for reducing the amount of information to be processed by the hu-
man user (e.g., context-based browsing).

2. Identify the similarities: This step involves the identification of semantic rela-
tionships between the entities that are of interest in the two ontologies. For doing
this the human user can make use of the suggestions offered by a set of lexical
and structural algorithms for determining the semantic relationships.

3. Create the mappings: This last step involves the capturing of the semantic rela-
tionships by mappings. This means that the domain expert has to take the proper
actions in order to capture the semantic relationships in the mapping language
statements or maybe in predefined mapping patterns [49].
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The ontology mapping tool used to illustrate the design-time mediation process in
this chapter is implemented as an Eclipse plug-in, part of the Web Service Modeling
Toolkit> (WSMT) [117], an integrated environment for ontology creation, visual-
ization, and mapping (see Fig. 10.3). It is currently compatible with WSMO ontolo-
gies (but if appropriate wrappers are provided, different ontology languages could be
supported). It offers different ways of browsing the ontologies using views (or per-
spectives) and allows the domain expert to create mappings between two ontologies
(source and target) and to store them in a persistent mapping storage [150].

10.2.3 Perspectives

As described in [148], the graphical point of view adopted to visualize the source and
the target ontologies makes it easier to identify certain types of mappings. These
viewpoints are called perspectives and by switching between combinations of these
perspectives on the source and the target ontologies, one can create certain types
of mappings using only one simple operation, map, combined with mechanisms for
ontology traversal and contextualized visualization strategies. Figure 10.4 shows how
the perspectives are represented in the ontology mapping tool.

A perspective contains a subset of the ontology entities (e.g., concepts, attributes,
relations, and instances) and the relationships existing between them. Usually the
perspective used for browsing the source ontology (source perspective) and the per-
spective used for browsing the target ontology (target perspective) are of the same
type, but there could be cases when different view types are used for source and
target. In cach of the perspectives there are a predefined number of roles which
the ontology entities can have. In general, particular roles are fulfilled by different

2 Open-source project available at http://sourceforge.net/projects/wsmt
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Figure 10.4. Perspectives in the ontology mapping tool

ontology entities in different perspectives and the algorithms (such as the one de-
scribed in Sect. 10.2.4) refer to roles rather than to ontology entities. The roles that
can be identified in a perspective are compound item, primitive item, and description
item. A compound item has at least one description associated with it, while a prim-
itive item does not have any description associated. A description item offers more
information about the compound item it describes and usually links it with other
compound or primitive items. By this the successor of a description item is defined
as the compound or primitive item it links to.

Not all of the information modeled in the ontology is useful in all stages of the
mapping process. As such, a context is a subset of a perspective that contains only
those ontological entities, from that perspective, relevant to a concrete operation.

A notion tightly related with contexts is the decomposition. A context can be
created from another context (this operation is called context update) by applying
decomposition on an item from a perspective or a context. Decomposition allows
navigating between contexts and links consecutive nested levels; the way the contexts
are navigated when creating mappings influences the creation types of mappings that
are created.

10.2.4 Decomposition Algorithm

The decomposition algorithm is used to offer guidance to the domain expert in the
mapping process and to compute the structural factor as part of the suggestion al-
gorithms (described later in this chapter). By decomposition the descriptions of a
compound item are exposed and made available to the mapping process. The decom-
position algorithm can be applied to description items and returns the description
items (if any) for the successors of those particular description items. An overview
of this algorithm is presented in Listing 10.1
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Listing 10.1. The decomposition algorithm

void decompose(Collection collectionOfltems){
Collection result;
for each item in collectionOfltems do{
result = result + [item];
if isCompound (item){
result = result + getDescriptions (item);

if isDescriptionltem (item){
Item successorltem = getSuccessor(item);
if (not createsLoop(succesorltem)){
result = result + [successorltem ];
result = result + getDescriptions (item);

}
}

return result;

The implementation of isCompound, isDescriptionltem, getDescriptions, getSuc-
cessor, and createsLoop differs from one view to another — for example, the cases
when loops are encountered (i.e., the algorithm will not terminate) have to be ad-
dressed for each view in particular.

10.2.5 Suggestion Algorithms

In order to deliver a truly semiautomatic mapping tool, suggestion algorithms are
a necessity. The suggestion algorithms are used to help the domain expert to make
decisions during the mapping process, regarding the possible semantic relationships
between the source and the target items in the current mapping context. A combina-
tion of two types of such algorithms is used: the first being a lexical algorithm and
the second being the structural algorithms that consider the description items in their
computations. Brief descriptions of the functionality that could be provided by such
algorithms are provided below.

For each pair of items the suggestion algorithms compute an eligibility factor,
indicating the degree of similarity between the two items: the smallest value (0)
means that the two items are completely different, while the greatest value (1) indi-
cates that the two items may be similar. For dealing with the values between 0 and
1 a threshold value is used: values lower than this value indicate different items and
values greater than this value indicate similar items. Setting a lower threshold en-
sures a greater number of suggestions, while a higher value for the threshold restricts
the number of suggestions to a smaller subset.

The eligibility factor is computed as a weighted average between a structural
factor, referring to the structural properties, and a lexical factor, referring to the
lexical relationships determined for a given pair of items. The weights can be chosen
on the basis of the characteristics of the ontologies to be mapped. For example, when
mapping between ontologies developed in dissimilar spoken languages, the weight
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of the lexical factor should be close to 0, in contrast with the case when mapping
between ontologies developed in the same working groups or institutions (the usage
of similar names for related terms is more likely to happen).

Even if the structural factor is computed using the decomposition algorithm, the
actual heuristics used are dependent on the specific perspectives where it is applied.
In a similar manner the current perspectives determine the weight for the struc-
tural and lexical factors as well as the exact features of the items to be used in
computations.

The lexical factor is computed on the basis of the syntactic similarities between
the names of a given pair of items. There are two main aspects used in these compu-
tations: first, the lexical relationships between the terms as given by WordNet? and,
second, the results returned by string analysis algorithms. WordNet is an on-line lexi-
cal reference, inspired by current psycholinguistic theories of human lexical memory
[146].

The structural factor is computed on the basis of the structural similarities be-
tween the two terms. It is directly dependent on the the number of mappings between
description items that can be found by decomposition (see Listing 10.1) starting from
the given source and target items.

The eligibility factor might seem very expensive to compute between a selected
source item and all the items from the target, especially when mapping large ontolo-
gies. The performance is drastically improved by the use of contexts since the set
of item pairs for which the eligibility factor has to be computed is significantly cut
down.

The algorithms briefly mentioned in this section assist the user in finding corre-
spondence between ontological entities. They provide suggestions based on simple
measures. Research on schema matching is, however, a dynamic area. Various algo-
rithms are continuously being developed and more and more meaningful and com-
plex mappings are successfully being discovered using these algorithms. To achieve
improved results they exploit additional information, like the structure of the ontol-
ogy, external resources like the Web or a corpus, and the available instance data.
The alignment format described in [67] provides an output format to represent map-
pings for such algorithms.* Used as an exchange format, it allows our tool to use
suggestions made by these algorithms.

10.2.6 Bottom-Up Versus Top-Down Approach

Considering the algorithms and methods described above, two possible approaches
during the ontology mapping can be followed: bottom-up and top-down approaches.

The bottom-up approach means that the mapping process starts with the map-
pings of the primitive items (if possible) and then continues with items having more

3 More details are available at http://www.cogsci.princeton.edu/wn/

4 The Ontology Alignment Evaluation Initiative evaluates the performance of matching al-
gorithms (http://oaei.ontologymatching.org/). It uses this alignment format as the exchange
format to compare generated mappings.
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complex descriptions. By this, the pairs of primitive items act like a minimal, agreed-
upon set of mappings between the two ontologies, and starting from this minimal set,
one could gradually discover more complex relationships. This approach is useful
when a complete alignment of the two ontologies is desired.

The top-down approach means that the mapping process starts with mapping
compound items and it is usually adopted when a concrete heterogeneity problem has
to be resolved. This is done when the domain expert is interested only in resolving
a particular item’s mismatches and not in fully aligning the input ontologies. The
decomposition algorithm and the mapping contexts it updates will help the expert to
identify all the relationships that can be captured by using a specific type of view and
which are relevant to the problems to be solved.

In the same way as for the other algorithms, the applicability and advantages/
disadvantages of each of these approaches depends on the type of view used.

10.2.7 Instance Transformation

A run-time engine plays the role of the data mediation service in SESA. It uses the
abstract mappings created during design time, grounds them to WSML, and uses
a reasoner to evaluate them against the incoming source instances. The mapping
rules, the source instances, and, if necessary, source and target schema information
are loaded into the reasoning space in what could be seen as a “pseudo-merged”
ontology (i.e., the entities from the source and the target and the rules are strictly
separated by namespaces). By querying the reasoning space for instances of target
concepts, if semantically related source instances exist, the rules fire and produce as
results the target instances.

The storage used could be a relational data base as well as a simple file-system-
based repository for mapping documents. Figure 10.5 gives a more detailed overview
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of the mediation support tools and their relationships for the reference implementa-
tion, together with the several possible usage scenarios identified for the run-time
data mediator engine.

It is important to note that the mappings grounding module is considered as be-
ing part of the run-time engine (in the case when the ontology alignment is expressed
by using an abstract mapping language). In this way, the same set of mappings (i.e.,
abstract, ontology language independent mappings) can be grounded to different lan-
guages depending on the scenario the run-time mediator is used in. A second reason
is that by grounding, a formal semantics is associated with the mappings, meaning
that only at this stage it is stated what exactly it means to have two items mapped
to each other. These formal semantics differ from one mediation scenario to another,
i.e., different grounding has to be applied when using the abstract mappings in in-
stance transformation than when using them in query rewriting. The third reason is
an easier management of mappings that form the ontology alignment. If ontologies
evolve, the mappings have to be updated accordingly and it becomes more efficient
to perform these updates free of any language-related peculiarities.

In the context of this discussion the main scope of the run-time data mediator
engine is to serve as a data mediator service in the SESA environment. Additionally
it can be made available as a Web service (i.e., a Semantic Web Service) that can be
invoked directly via SOAP from specialized tools or through a Web interface using
a Web browser. And finally, the run-time data mediation engine can be offered as a
standalone application that helps in testing and evaluating the mappings during the
mapping process at design time. For more convenience, the standalone version can
be integrated and delivered together with the ontology mapping environment as a
helper tool for the ontology mapping.

10.3 Behavioral Mediation

We address the behavioral mediation problem in the context of Semantic Web Ser-
vices. In this scenario, the problems may occur only when two partners are commu-
nicating, and there are mismatches between their communication patterns. This type
of mediation can also be considered protocol mediation (as communication can also
refer to the communication protocol), but in the semantic community these com-
munication patterns are usually referred to as public processes [31, 33, 76] and the
communication protocol used by the two partners is not important in this context.

10.3.1 Behavioral Mediation Scenario

We will refer further to behavior mediation as process mediation since in the case of
Semantic Web Services the behavior is modeled as public processes. For addressing
the problem of process mediation we have to define first what a process means. We
adopt the standard definition of a process: collection of activities designed to produce
a specific output for a particular customer, based on specific inputs [1], an activity
being a function, or a task that occurs over time and has recognizable results.
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Figure 10.6. Process consisting of multiple processes

Depending on the level of granularity considered, each process can be seen as
being composed of different, multiple processes. The smallest process possible con-
sists of only one activity. Figure 10.6 illustrates a process obtained by combining
multiple processes. The output of one process (or more processes) is considered the
input of one or many other processes.

One can distinguish between two type of processes: private processes, which are
carried out internally by an organization, and usually are not visible to any other
entity, and public processes, which define the behavior of the organization in col-
laboration with other entities [75]. From the process mediation point of view we are
interested only in the public processes; the private process not being visible to the
exterior cannot be the object of process mediation in the Semantic Web Services’
context, where mediation is intended to facilitate the services’ discovery, invocation,
and composition. For example, if a client of a bank wants to find his account balance
using a Semantic Web Service, he only needs to know that by providing his account
number, and maybe some security-related data, the service will return the balance.
But he does not need to know, and probably he is not interested in knowing, what
kind of computations are performed internally to produce this result.

10.3.2 Process Compatibility

In this context, we understand process compatibility to mean full matching of the
communication patterns between the source and the target of the communication;
that is, when one of them sends a message, the other one is able to receive it.

Since a business communication usually consists of more than one exchange
message, finding equivalences in the message exchange patterns of the two (or more)
parties is not at all a trivial task. Intuitively, the easiest way of doing this is to first
determine the mismatches, and then search for a way to eliminate them. In [75],
the three possible cases of communication mismatches which may appear during
message exchange are identified:

1. Precise match: The two partners have exactly the same pattern in realizing the
business process, which means that each of them sends the messages in exactly
the order that the other one requests them. In this ideal case the communication
can take place without using a process mediator. However, this does not mean that
the services of a data ,ediator may not be required.
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2. Solvable message mismatch: Here, the two partners use different exchange pat-
terns, and several transformations have to be performed in order to overcome the
mismatches (for example, when one partner sends more than one concept in a sin-
gle message, but the other one expects them separately; in this case the mediator
can “break” the initial message and send the concepts one by one).

3. Unsolvable message mismatch: One of the partners expects a message that the
other one does not intend to send. Unless the mediator can provide this message,
the communication reaches a dead end.

In order to communicate, two end points have to define compatible processes, or
use an external mediation system as part of the communication process. The role of
the mediator system will be to transform the client’s messages and/or the Web Ser-
vice’s messages, in order to obtain a sequence of equivalent processes. This should
be done only by operating on the messages sent by the two partners, as no modi-
fications are allowed at the interface level (i.e., both the service and the requester
have well-defined interfaces, and assume the other partner is conforming to these
interfaces).

The process mediation work is concerned with determining patterns of solvable
and unsolvable mismatches, and with providing support for overcoming the problems
raised by the solvable mismatches. For this, a set of minimal solvable mismatches
needs to be determined; this set should be further used in decomposing more complex
mismatches, and addressing those simply by splitting a big and complex communi-
cation problem into smaller, easier-to-solve ones.

10.3.3 Mismatches: Solvable or Unsolvable?

In this section, we will analyze the two situations relevant for the process mediation:
solvable and unsolvable mismatches. For illustrating the mismatches, this section
also introduces a simple example of behavioral heterogeneity.

Behavioral Heterogeneity Example

The example introduced in this section refers to the simple scenario of booking a
plane ticket between two given locations. The requester and the provider of the
service have well-defined choreographics that can be modeled using the WSMO
choreography definition, or any other process representation formalism. From the
mediation perspective, the useful information is the message exchange patterns of the
two participants in the conversation, which is graphically represented in Fig. 10.7.

In this example we assume there are no data heterogeneity problems, that is, the
same underlying ontologies are used by the requester and the provider of the service.
The only existing problem is that each of them has a different message exchange
pattern, and the messages sent by one of them are not expected in exactly the same
format or order by the other one. In this situation, even if all the information is avail-
able, and the communication can theoretically take place, the services of a process
mediator are needed during the interaction.
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Figure 10.7. An example of heterogeneous behaviors
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Solvable Mismatches

In order to be able to solve process mediation mismatches, we have to first determine
what these mismatches are, and in what conditions they may appear. We identify a
set of basic mismatches, which can be addressed with the help of a process mediator.
By combining these mismatches, we can obtain some other solvable mismatches.
This basic mismatches are further described in this section:

o Case A: stopping an unexpected message. This is the simplest mismatch from
the set we identified: one of the partners sends a message that the other one does
not want to receive (Fig. 10.8).

In the previously described example, the instance of f1ight_availablity
concept is sent by the service, but is not expected by the client; in this case, the
instance is simply stopped by the process mediator.

e (Case B: splitting a message. In this case one of the partners sends in a single
message multiple information that the other partner expects in different mes-
sages (Fig. 10.9). There may be two different situations: (1) the message consists
of two or more instances that should be split in multiple messages or (2) the mes-
sage consists of an instance that can only be represented in the targeted partner’s
ontology as multiple instances.
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In the example previously presented the instance of the route concept needs to
be split into an instance of to and an instance of from; these two instances are
further sent separately to the service

Case C: combining multiple messages. This is the opposite case of the one pre-
viously presented: two or more messages should be combined in a single message
(Fig. 10.10).

In the example presented the instance of person_name and the instance of
miles_more_account should be combined by the process mediator in a sin-
gle message.

Case D: inverting the order of messages. This mismatch occurs when one of
the partners sends the information in an order different from that in the other one
wants to receive it (Fig. 10.11).

In the previously presented example the message containing the instance of the
travel_dates concept is sent after the person_name and miles_more.
account instances are sent; however, the service expects to receive this instance
first.

Case E: sending a dummy acknowledgement. Sending a dummy acknowledge-
ment is needed in case one of the partners is blocked expecting an acknowledge-
ment for a message previously sent. In case the targeted partner received the
message, but conforming to its choreography it is not going to send an acknowl-
edgement for receiving this message, the process mediator should generate a
dummy one (Fig. 10.12).

Process
Mediator|

Business SEL AandB Business
Partner 1 == Partner 2

Figure 10.10. Combining multiple messages

Process
Mediator|

Business b - Business
Partner 1 P Partner 2

Figure 10.11. Inverting the order of messages

Process
Mediator|

Business Business

Partner 1 Partner 2
Ack A

Figure 10.12. Sending a dummy acknowledgement



228 10 Mediation

In the example presented at the beginning of this section the process mediator
should generate a dummy acknowledgement for the message containing the in-
stance of miles_more_account.

Unsolvable Mismatches

The types of mismatches that we consider unsolvable can be generated by one of the
following situations (see Fig. 10.13):

e One of the partners expects information that the other one is not going to send
during the conversation.

e Both partners are blocked waiting for messages that are going to be sent further
in the communication.

Combinations of Mismatches

By combining the basic mismatches, one can obtain more complex mismatches. Any
combination of solvable mismatches will lead to more complex, but still solvable
mismatches. Figure 10.14 presents an example of such a combination, including
cases A, B, C, and D.

In this example, the process mediator first has to split the first message sent by
business partner 1 and to combine part of it with the second message sent. The other
part of the first message has to be retained for further use. The second message
sent by business partner 2 also has to be split in two, but in this case some of the
information contained in it can be discarted, as the communication partner is not
expecting it at any point of the communication.

However, the occurrence of a single unsolvable mismatch in the communication
leads to an unsolvable mismatch (Fig. 10.15). In the previous example, simply in-
verting the order of sending C and receiving E for business partner 1 leads to the
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Figure 10.14. Mismatch consisting of a combination of solvable mismatches
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situation where both partners are blocked waiting for messages that are going to be
sent further in the conversation (that is, business partner 2 will not send E until C has
been received, while business partner 1 will not send C before receiving E).

As a consequence, a simple compatibility check before the actual invocation will
have to determine if one unsolvable atomic mismatch is present in the interaction. If
it is, then the communication is not possible. However, the fact that two behaviors
are compatible does not guarantee a successful communication, as during the com-
munication any of the partners can send a message that violates an internal rule for
the other partner.

10.3.4 Process Mediator Prototype

A process mediator able to solve the types of mismatches previously described has
already been developed. This section presents the algorithm implemented by this
process mediator.

The process mediator is triggered when it receives a message and a conversation
ID. The message contains instances of concepts, in terms of the sender’s ontology.
The conversation ID is needed as we assume that the same process mediator can
be simultaneously used for multiple conversations and it uniquely identifies the in-
stances of the choreographies involved in the communication.

After being invoked, the process mediator performs the following steps:

1. It loads the two choreographies from the repository — as the process mediator
cannot influence the transformations done by the conversation partners it has to
maintain copies of the choreographies, called choreography instances.

2. It adds the instances contained in the message to the corresponding choreog-
raphy instance (the sender’s choreography instance); this step is needed con-
sidering that the choreography instances contain the information prior to the
transmission of the current message.

3. It mediates the incoming instances in terms of the targeted partner ontology, and
checks if the targeted partner is expecting them, at any phase of the communi-
cation process. This is done by checking the in and shared lists; if the owner
of a certain instance (the concept that was instantiated) is part of any of these
two lists. The instances that are expected by the targeted partner are stored in an
internal repository.
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4. For all the instances from the repository, the process mediator has to check if they
are expected at this phase of the communication, which is done by evaluating the
transition rules. The evaluation of a rule will return the first condition that can
not be fulfilled, that is, the next expected instance for that rule. This means that
an instance is expected if it can trigger an action (not necessary to change a state,
but to eliminate one condition for changing a state).

The possibility that various instances from this repository can be combined in
order to obtain a single instance expected by the targeted business partner is also
considered.

5. Each time the process mediator determines that one instance is expected, it sends
it, deletes it from the repository, updates the targeted partner’s choreography
instance, and restarts the evaluation process (step 4). When a transition rule can
be executed, it is marked as such and is not reevaluated at further iterations.
The process mediator only checks if a transition rule can be executed, and does
not execute it, since it cannot update any of the two choreography instances
without receiving input from one of the communication partners. By evaluating
a rule, the process mediator determines that one of the business partners can
execute it, without expecting any other inputs.

This process stops when, after performing these checks for all the instances from
the repository, no new message is generated.

6. For each instance forwarded to the targeted partner, the process mediator has to
check if the sender is expecting an acknowledgement. If the sender expects an
acknowledgement, but the targeted partner does not intend to send it, the process
mediator generates a dummy acknowledgement and sends it. Simultaneously, it
updates the sender’s choreography instance.

7. The process mediator checks all the sender’s rules and marks the ones that can
be executed.

8. The process mediator checks the requester’s rules to see if all of them are
marked; when all are marked, the communication is over and process mediator
deletes all the data regarding this conversation, from both its internal repository
and the WSMX repository.

This algorithm is implemented by the process mediator in order to solve the
communication heterogeneity problem.

10.3.5 How To Solve the Unsolvable

The process mediator previously described deals with overcoming a set of hetero-
geneity problems, called solvable mismatches in the previous subsections. But this
kind of automatic mediation cannot solve any heterogeneity problem, as it does not
consider the possibility of changing the message exchange pattern of the participants
in the conversation (as both of them are supposed to have previously well defined
interfaces).

For changing the public processes of the business partners involved in a conver-
sation, one requires the input of a domain expert. That is, a new component, a design-
time process mediation, which provides the necessary interface for process mediation
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is needed. Such a component should be able to display in a certain process represen-
tation formalism the two public processes ,and should guide the domain expert in
changing the order of messages (sent or received) for any of the processes involved
in the interaction. There is no such tool currently available, but the semantic commu-
nity is more and more interested in this approach. One such tool should result from
the research activities carried out in one of the ongoing European projects, SUPER.’

10.4 Summary

This chapter has presented several aspects regarding one of the most challenging
problems in SESA, the mediation. The chapter began with a brief overview of the
mediation role in SESA, underlying why mediators are important from the very
definition of Semantic Web Services until the actual invocation. The diversity in
mediation usage leads to the definition of several mediation layers, presented at
the beginning of the chapter: semantic mediators, semantic mediation patterns, and
mediation services.

Further on, the chapter focused on two mediation services, for providing data and
process mediation. For both of these services, the description began with the concep-
tual consideration, the ideas and approaches taken in solving different heterogeneity
problems, and continued with a presentation of the actual implementation.

It is important to note that the two approaches and the solutions for data and
behavior mediation described in this chapter are not unique. A multitude of other
techniques could be employed to achieve the same results, each of them with its ad-
vantages and disadvantages in handling the peculiarities of a particular heterogeneity
problem. Along this line of thought, it is easy to realize the advantages offered by the
SESA infrastructure, which allows the seamless integration and usage of specialized
components that can perform more efficiently in certain contexts.

® http://www.ip-super.org/
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Storage and Internal Communication

This chapter describes the functionality and working of storage and internal com-
ponent communication of Semantically Enabled Service-oriented Architectures
(SESA). The storage component is responsible for providing a means to persistently
store the Semantic Web Services elements (e.g., Web service descriptions, medi-
ators, goals, and ontologies) as well as intermediate workflow and event data and
execution semantics. Moreover, it further investigates the use of the triple space
computing paradigm [73] for communication and coordination of the individual
components of SESA, based on the principle of publishing and reading the semantic
data. It further details how internal communication using triple space computing can
help in decoupling the individual components and their effective communication
[129] within the SESA framework.

The storage and internal communication service in SESA is required to provide
support in two major aspects. Firstly, for storing information in distributed and scal-
able storage repositories and, secondly, using the persistent publication to carry out
the communication based on the publication and reading of data in order to make it
compatible with the principle of the Web.

The storage space is based on the Web and semantics, i.e., it can be accessed over
the Web and has Resource Description Framework (RDF) triples as the fundamental
storage element. It supports storing information both at run time and at design time.
It allows storage of formal descriptions of ontologies, Semantic Web Service descrip-
tions, mediation mappings, user goals along with any contextual information about
their use, and any intermediary data during interplatform services communication.
The storage space can be composed on a single repository or widely distributed on
multiple Web-accessible storage repositories and is visible as single virtual storage.

The storage service in SESA is not only about semantic data storage but also
about scalable communication and coordination of Semantic Web Services based
on emerging triple space computing [193]. It has been achieved by extending tu-
ple space computing to support RDF and carding out communication and coordi-
nation based on persistent publication and reading to enable decoupling based on
time, reference, and location [129]. It supports the communication between com-
ponents within SESA; hence, it enables the decoupling of the platform services of
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Kappa Service-Oriented Architecture (SOA). It also supports communication be-
tween different SEE systems to form a SEE cluster; hence it enables the decoupling
of different Semantic Web Services based on SESA.

A resource manager is used in SESA to provide a homogenous interface to the
underline storage services. The resource manager is responsible for the management
of the repositories that store definitions of any semantic descriptions of services, i.¢.,
Web service descriptions, goals, ontologies, mediators, and any other nonsemantic
data in SESA. Depending on the scope of data stored in the underlying registries,
SESA distinguishes registries as being local or global. Data stored in a local registry
is relevant for the operation of SESA in a particular context. In some cases individual
functional components may also require local storage. On the other hand, a global
registry can be shared across several domains (e.g., registries of semantic descrip-
tions of services). While both stored data and accessibility to this data might differ
considerably between registries, the resource manager remains the only entry point
for them, which means it is not possible to access any of the registries directly, but
only through the resource manager (in this way the burden of accessing any of the
repositories is delegated to the resource manager). A component that needs to re-
trieve, modify, or add any data in one of the repositories has to invoke the resource
manager. The operations that need to be performed to retrieve the data and the repos-
itory that stores the data remain transparent.

The rest of the chapter has been structured as follows. It gives an introduction to
the triple space computing concept and provides the internal design details of triple
space computing kernel architecture. It explains the role of triple space computing
in SESA in different aspects. It further provide details of some evaluation strategies
that are to be analyzed to determine the benefits obtained from using triple space
computing in SESA, followed by a summary.

11.1 Introduction to Triple Space Computing

Aiming at enhancing the facilities for automated information processing on the
Internet, Tim Berners-Lee (the inventor of the World Wide Web and Director of the
W3C) introduced the the vision of the Semantic Web. Since existing Web technolo-
gies around URI, HTTP, and HTML do not support automated processing of Web
content, the aim is to develop technologies that allow the description of Web con-
tent in a structured manner; furthermore, semantically defined metadata shall help to
overcome the problem of heterogeneity within the Internet as an open and distributed
system. Ontologies have been identified as the basic building block for the Semantic
Web, as they provide machine-processable, semantic terminology definitions.

In conjunction with the idea of the Semantic Web, Web Services are pro-
posed as the technology for automated information processing, thus combining
the benefits of the Web with the strength of component-oriented computation. In
fact, Web Services promise to allow automated interaction and seamless integra-
tion of several entities of the Web; thus, they are considered as the technology for
next-generation information systems with special regard to enterprise application
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integration, buisiness-to-business (B2B) technologies, and e-commerce. As initial
Web service technologies around Simple Object Access Protocol (SOAP), Web Ser-
vices Description Language (WSDL), and UDDI failed to realize the promise of
seamless interoperability, the concept of Semantic Web Services has been conceived.
Through the addition of semantics to Web service descriptions, intelligent inference-
based mechanisms shall allow automated discovery, composition, and execution of
Web Services.

Space-based computing has its roots in parallel processing. Linda was developed
by David Gelernter in the mid-1980s at Yale University. Initially presented as a par-
tial language design, it was then recognized as a novel communication model on its
own and is now referred to as a coordination language for parallel and distributed
programming. Coordination provides the infrastructure for establishing communica-
tion and synchronization between activities and for spawning new activities. There
are many instantiations or implementations of the Linda model, embedding Linda
in a concrete host language. Examples include C-Linda, Fortran-Linda and Shared-
Prolog. Linda allows one to define executions of activities or processes orthogonal to
the computation language, i.e., Linda does not care about how processes do the com-
putation, but only how these processes are created. The Linda model is a memory
model. The Linda memory is called tuple space and consists of logical tuples. There
are two kinds of tuples. Data tuples are passive and contain static data; process tu-
ples, or “live tuples,” are active and represent processes under execution. Processes
exchange data by writing and reading data tuples to and from the tuple space.

In 2003 and 2004 there were discussions and collaborations involving Tim
Berners-Lee, Dieter Fensel, Eva Kuehn, and Frank Leymann on the relationships be-
tween the Semantic Web, Web Services, and space-based computing. On the basis of
those discussions and collaborations, Dieter Fensel published a technical report about
Triple Based Computing presenting the idea of a semantically enabled, space-based
communication and coordination middleware as an infrastructure for the Semantic
Web and Semantic Web Services. These ideas have been adopted for two research
projects, i.e., Triple Space Computing (TSC) funded by the Forschung, Innovation,
Technologie — Informationstechnologie (FIT-IT), an Austrian Government research
program in the line of “semantic systems,” and Triple Space Communication (Trip-
Com), which is a European Commission funded project under the Sixth Frame-
work Programme, priority 2 Information Society Technologies (IST) project number
IST-4-027324-STP.

Triple space computing inherits the publication-based communication model
from the space-based computing paradigm and extends it with semantics [129]. In-
stead of sending messages back and forth among participants as in current message-
based technologies, triple space computing enabled applications will communicate
by writing and reading RDF triples in the shared space.

The triple space will offer an infrastructure that scales conceptually on an
Internet level. Like Web servers publish Web pages for humans to read, triple
space servers would provide triple spaces to publish machine-interpretable data.
Providers and consumers could publish and consume triples over a globally accessi-
ble infrastructure, i.e., the Internet. Various triple space servers could be located at
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different paces all over the globe and hence every partner in a communication process
can target its preferred space, as it is the case for Web and FTP servers. This high-
lights many of advantages for providers and consumers [73, 129]. The providers of
data can publish it at any point in time (time autonomy), independent of its inter-
nal storage (location autonomy), and independent of the knowledge about potential
readers (reference autonomy), and independent of its internal data schema (schema
autonomy):

e Time autonomy. There is a only minimal time dependency between the data
provider and reader, in the sense that a triple must be written first before it can
be retrieved.

e Location autonomy. The triple space as a storage location is independent of
the storage space of the providers or readers of data. Complete independence
is achieved by ensuring that triples are passed to and from the triple space by
value and in the format required by the triple space.

e Reference autonomy. The provider and the reader of data might know about each
other, but ex ante knowledge for purposes of communication through the triple
space is not required. In the simplest case, the reading and writing of data is
anonymous.

e Data schema autonomy. Triple space computing provides its own schema (based
on triples according to RDF) and the data written and retrieved from a triple space
will follow that data model. This makes the provider and the reader independent
of their internal data schemas.

In addition it is worthwhile to state further positive side effects of triple space
computing [129]:

e A triple space provides a trustworthy third-party infrastructure for data commu-
nication. Its involvement can enable secure data exchange and business process
negotiation and communication.

e The triple space ensures persistent data storage. It allows evolution of communi-
cation means for humans and machines in time and that the data eventually can
be read by all partners involved in the data exchange.

In other words, triple spaces introduce an infrastructure that enables machines to
use an equally powerful communication medium as the Web provides for humans.
Triple spaces will supplement Web Services, but will not replace current technolog-
ical approaches. Just as Web technology has advanced message-oriented communi-
cation means (e.g., phone or e-mail) for humans, triple space computing provides
a complementary approach for machine-to-machine interaction. It is also clear that
this is not the end, but just the beginning of a long and promising endeavor for a
revolutionary technology. No application can quickly check the entire Semantic Web
whether to determine if there is a relevant triple. And vice versa, no application may
want to simply publish a triple and then wait forever until another application picks
it up. Clever middleware is required that provides a virtual global triple space infra-
structure without requesting each application either download or search through the
entire Semantic Web. Moreover, the triple space needs to provide security and trust
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without neglecting scalability. However, none of these requirements are really new.
They apply for any application that works at a global scale.

11.2 Triple Space Kernel

Like with the Web, the TSC project proposal aimed at building a triple space comput-
ing infrastructure based on the abstract model called representational state transfer
(REST) [183]. The fundamental principle of REST is that resources are identified by
URIs and accessed via a stateless protocol like HTTP in order to transfer represen-
tations, such as HTML or XML documents, of resources over the network. HTTP
provides a minimal set of operations enough to model any applications domain.

Since every representation transfer must be initiated by the client, and every re-
sponse must be generated as soon as possible (the statelessness requirement), there
is no way for a server to transmit any information to a client asynchronously in
REST. Furthermore, there is no direct way to model a peer-to-peer relationship be-
tween clients. Finally, HTTP caching based on expiration times for cached requests
is not applicable in triple space computing; where a server has no preknowledge of
the lifetimes of named graphs. The limitations of REST in the context of triple space
computing motivated our approach of a hybrid architecture called superpeer architec-
ture, which combines traditional client—server and peer-to-peer architectures. In this
architecture there are three kinds of nodes: servers, heavy clients, and light clients.
In the simplest configuration, a particular triple space is realized by a single server,
which is accessed by multiple light clients, for example, via HTTP, in order to write
and read named graphs and to receive notifications about graphs of interest. As the
number of light clients increases, the server may become a bottleneck. To overcome
this, additional servers can be deployed to provide additional access points to a triple
space for light clients. As a result, a single triple space is effectively spanned by mul-
tiple servers, which use an interserver protocol to consistently distribute and collect
named graphs to and from other involved servers. Servers can also be deployed to
act as caching proxies in order to improve client-perceived access times. The third
kind of nodes is heavy clients, which are not always connected to the system. Like
servers they are capable of storing and replicating triple spaces and enable users and
applications to work off-line with their own replicas. While heavy clients can join
existing triple spaces spanned by servers, they are not forced to do so.

The core functionality of triple space computing servers and heavy clients is
realized by a component called the triple space kernel. Heavy clients run in the same
address space as the triple space kernel, and the triple space kernel is accessed by
its native interface. Light clients use proxies to access the triple space kernel of a
server node transparently over the network. As a variation a light client can access a
triple space kernel via a standardized protocol like HTTP, as already mentioned. In
this case a server side component, e.g., a servlet, translates the protocol to the native
triple space kernel interface. Figure 11.1 shows the architecture of the triple space
kernel. The main components of the triple space kernel are briefly described in the
following subsections.
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Figure 11.1. Triple space kernel architecture

11.2.1 Operations Layer

The operations layer is an important part of triple space kernel that allows clients
to interact and manipulate the data in the space. It abstracts from the underlying
implementation details of supported functionalities and provides a simplified view
to its users. All interactions between a triple space and its participants take place
through this layer. The interfaces provided by this layer to access different supported
operations are described in the following subsections.

Triple Space Interface

The triple space interface is defined to provide operations specific to the usage of

already existing spaces. These operations are defined and briefly described below.
The write operation allows the writing of an RDF graph to a triple space identi-

fied by a URL. It supports transaction. The signature of this operation is given below:

write (URI spaceURI, Transaction tx, Graph g): URI
namedGraphURI

The query operation allows querying over a triple space identified by a URL It
returns an RDF graph. This operation also supports transaction. The signature of this
operation is as follows:

query (URI spaceURI, Transaction tx, Template t): Graph g

It is important to note that the semantics of graph and of named graph within the
scope of triple space computing are different. A graph can be generated arbitrarily
by taking subgraphs from different graphs, while a named graph is a complete graph
having a unique name. That is, a named graph can be defined as a tuple:

namedGraph: (URI, Graph)
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The waitToQuery operation allows querying over a triple space identified by a
URL. It is similar to the query operation but waits until a given time to return an RDF
graph. This is a blocking operation and supports transaction. This operation has the
following signature:

waitToQuery (URI spaceURI, Transaction tx, Template t,
TimeOut timeOut): Graph g

The read operation allows the reading of a named graph from a triple space
identified by a URL. It returns an RDF graph from the space. This operation supports
transaction. Two different types of read operations, blocking and nonblocking, are
supported in triple space computing. The following is the signature of the nonblock-
ing read operation:

read (URI spaceURI, Transaction tx, URI namedGraphURI):
NamedGraph namedGraph

The signature of the blocking read operation is as follows:

read (URI spaceURI, Transaction tx, Template t):
NamedGraph namedGraph

The waitToRead operation allows the reading of a named graph from a triple
space identified by a URI. The operation waits until some triples are available for
reading. It returns a named graph. This operation also supports transaction. The fol-
lowing is the signature of the waitToRead operation:

waitToRead (URI spaceURI, Transaction tx, Template t,
Timeout timeOut): NamedGraph namedGraph

The take operation is similar to the read operation but it deletes the graph that
was read. The signature of this operation is as shown below:

take (URI spaceURI, Transaction tx, Template t):
NamedGraph namedGraph

The waitToTake operation is similar to the waitToRead operation but with the
take support. The following is the signature of the waitToTake operation:

waitToRead (URI spaceURI, Transaction tx, Template t,
Timeout timeOut): NamedGraph namedGraph

The update operation allows the updating of information specified on the tem-
plate to the space identified by the URI. This operation supports transaction. The
semantics of this operation is take and write in that order. The following is the sig-
nature of this operation:

update (URI spaceURI, Transaction tx, Template t):
NamedGraph namedGraph

The subscribe operation allows users to subscribe for a named graph to the triple
space identified by the URI. The following is the signature of this operation:

subscribe (URI spaceURI, Templace t, Callback callbackReceiver):
URI subscriptionURI
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The parameter callbackReceiver could either be a URI of the subscriber, or a
remote method name or any other means of calling the subscriber. The exact nature
of the callbackReceiver, however, depends on the concrete implementation of the
triple space computing APL

The unsubscribe operation removes a previously subscribed subscription speci-
fied by the URI from the space identified by the URI. The signature of this operation
is as follows:

unsubscribe (URI spaceURI, URI subscriptionURI): void

The notify operation delivers notification to the callback for a previously sub-
scribed subscription identified by the URL. The signature of this operation is as fol-
lows:

notify (URI spaceURI, URI subscriptionURI, URI namedGraphURI):
void

The namedGraphURI specifies the URI of a named graph which causes this
notification.

The advertise operation is defined for enabling the advertisement of information
embedded in a template to the triple space. It could be used for space optimization,
for example. The following is the signature of this operation:

advertise (URI spaceURI, Template t): URI advertisementURI

The unadvertise operation removes a previously advertised advertisement from
the space. The signature of this operation is as follows:

unadvertise (URI advertisementURI): void

The count operation returns the number of RDF graphs, triples, or named graphs
specified in a template available in the triple space identified by a URI. The following
is the signature of this operation:

count (URI spaceURI, Transaction tx, Template t): long

In all the operations listed above the transaction parameter tx is optional. If it is
not specified, the default transaction settings will be applied. The default transaction
includes transaction creation followed by transaction operation followed by commit
transaction. It can be seen as follows:

createTX (): Transaction tx
operation(Transaction tx): void
commit( Transaction tx): boolean

Where createTX() creates the transaction, operation(Transaction tx) will apply
operations on the scope of transaction tx and commit(Transaction tx) will apply com-
mit operation to transaction tx.

Triple Space Management Interface

The triple space management interface is defined as providing operations specific
to the management of the triple space. These operations are defined and briefly de-
scribed below:
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1. Space management operations. The following space management operations
are defined in triple space computing.
The createSpace operation creates a triple space for a given URI with default
security settings. The level of security can be changed, altered, or removed. The
security in triple space computing is defined in [154]:

createSpace (URI spaceURI): void

The leaveSpace operation enables the triple space kernel to leave the space iden-
tified by a URI. That is, the triple space kernel stops replicating RDF graphs from
the space identified by a URI. The following is the signature of this operation:

leaveSpace (URI spaceURI): void

2. Transaction management operations. The following transaction management
operations are defined in triple space computing.
The createTransaction operation is provided to support creation of transactions
in triple space computing. It creates a transaction and returns a transaction ID of
this particular transaction. The following is the signature of this operation:

createTransaction (): Transaction tx

The commitTransaction operation enables execution of the transaction identified
by a transaction ID. The result of this operation is boolean. That is, the transaction
can either be executed successfully or it cannot be executed at all. The signature
of this operation is given below:

commitTransaction( Transaction tx ): boolean

The abortTransaction operation allows the already executed transaction to be
undone, which is identified by a transaction ID. The following is the signature of
this operation:

abortTransaction(Transaction tx): void

3. Security management operation. The following security management op-
erations are seen to be required for supporting basic security in triple space
computing.

The secure operation enforces the security policy as specified in the template.
This operation can be executed at triple space level or at the named graph level.
Two possible signatures of this operation follow:

secure (URI spaceURI, Template t): URI securityURI

secure (URI namedGraphURI, Template t): URI securityURI

The alterSecurity operation allows the security level to be updated to the previ-
ously set security. The signature of this operation is as follows:

alterSecurity (URI securityURI, Template t): URI securityURI
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The validate operation checks if the security policy has been violated while doing
other operations on the triple space.

validate (URI securityURI, Template t): boolean

11.2.2 Mediation Engine

Owing to diversity in the nature of different communicating participants over triple
space, the possibility of heterogeneity in the data used for communication of differ-
ent participants may arise and make mediation an important issue to be resolved in
triple space computing. The mediation engine [194] as part of the triple space kernel
[183] is concerned with handling this heterogeneity by resolving possibly occurring
mismatches among different triples. Assume two triple space computing participants
using different data models for communication. Then an RDF instance in an RDF
schema of one triple space computing participant is needed to be represented in
the RDF schema of the other triple space computing participant without altering
or losing the semantics. For this reason, a mapping language is needed that specifices
how to transform the RDF triples according to different RDF schemas of different
communicating participants. The mediation rules are to be specified at design time
and will be processed by a mediation engine at run time.

The mediation management interface binds the mediation engine with the user
interface in order to allow participants to interact with the mediation manager to
turn on or off the usage of the mediation engine before template matching and to
add, replace, or remove the mapping rules. The mediation manager inside the media-
tion engine receives and serializes the mapping rules in Abstract Mapping Language
(AML) [189] as set of RDF triples on the triple space. The system interface allows the
operations layer to communicate with the mediation engine in order to find any cor-
responding RDF schema resources using the mediation mapping rules before search
for RDF triples starts. The template parser receives the template provided by a tem-
plate handler in the operations layer and parses out all RDF schema resources values
in there. The rule collector pulls out the appropriate set of RDF triples (mapping
rules in AML serialized as set of RDF triples) and forwards it to the rule executor.
The rule executor is the core component of the mediation engine and processes the
mapping rules for all the RDF schema resources from the template provided by the
operations layer in order to find any corresponding RDF schema resources that are
to be mapped. The template generator receives a set of corresponding RDF schema
resources from the mediation mapper and generates multiple templates accordingly
and finally forwards them to the query engine to make a search in the triple space.

The working of the triple space computing mediation engine starts when users
(i.e., triple space computing participants) add mediation mapping rules via the me-
diation management interface. The mediation manager takes care of serialization of
the mediation rules in the triple space storage as RDF triples. The mediation engine
manager also helps add, replace, and delete the mapping rules. When a triple space
computing participant wants to search for something from the triple space, the op-
erations layer generates a template which contains the information about required
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RDF triples and forwards it to the system interface of the mediation engine. The
template parser in the mediation engine receives the template and parses out all the
RDF schema resources mentioned in the template and forwards them to the rule ex-
ecution module. At the same time, the rule collector checks the triple space for any
mediation mapping rules serialized as RDF triples and generates mapping expres-
sions and forwards them to the rule execution. The rule execution being the core
of the triple space computing mediation engine executes the mapping expressions
against the RDF schema resources (provided by the template parser) and finds any
corresponding sets of RDF schema resources. All the sets of RDF schema resources
discovered from mediation mapping rules are forwarded to the template generator,
which encloses the RDF schema resources in templates and sends it back to the op-
erations layer. After all the abovementioned processes, the operations layer can for-
ward the required triples to the coordination layer and down to the data access layer
to search the required triples according to the RDF schema resources mentioned by
the triple space computing participant along with the corresponding one found by
mediation process and carry out data transformation from the source schema to the
target schema as mentioned in the mapping expression.

Design Time

The identification of heterogeneities between different RDF schemas and instances
and the process of the creation of mappings cannot be fully automated. The ontol-
ogy and domain experts have to provide inputs to identify and create mappings at
various stages. The creation of mapping rules requires human intervention and in-
volves manual procedures. It makes this process a hectic and time-consuming job.
Considering these issues, there is need for graphical tools that allow users to create
the mappings in an easy way by providing assistance to the users and to reduce their
efforts to simple choices and validations. Adaptation of this approach was inspired
by related work of Web Services Execution Environment (WSMX) data mediation
[149] in the WSMX Working Group [35].

The graphical interface is to be built in Java, where it should show the two par-
ticular RDF schemas of the source and target users who are to communicate with
each other. The default ontology language to be supported will be AML. The graph-
ical interface will be linked with the mediation management interface. The designer
component will provide a way to identify and create the mapping rules easily and
quickly, without actually knowing the internal details and syntax of AML. The users
or domain experts can use the mapping tool to operate on the RDF schemas to cre-
ate mapping rules. The already existing mapping rules stored in the triple space can
be loaded into the graphical interface for the users to do any updates or to reuse the
mapping rules.

Run Time

The run-time module of the data mediation will be the mediation engine in the triple
space kernel. Based on the description of the insight details of the architecture of
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the mediation engine, the following is the internal API that will be developed to deal
with mediation based on the mapping rules available, during the communication of
users over triple space. The API will enable the mediation engine to search for the
appropriate mapping rules based on the schema of the communicating participants,
access any particular mapping rule, ground the mapping rule into RDF, and execute
the mapping rules. The operations of the run-time API are listed below:

searchRule (Template ts, Transaction tx): Graph

searches the mediation mapping rules according to the template given.

getRule (URI ts, Transaction tx, URI g): Graph

gets the particular mediation mapping rule graph.

groundRule (AMLrule rule): Graph

takes the mediation mapping in AML and converts it into an RDF named graph.

executeRule (URI ts, Transaction tx, URI g): Templates

executes a particular mapping rule at the given URI.

The searchRule operation returns the set of graphs that matches with the template
provided to it. Such a kind of operation is required when the particular mapping rule
is not known. The requirements of the mapping rule regarding target ontology, source
ontology, and a particular concept (resource) of a particular ontology (schema) can be
specified in the template to find some relevant mapping rule. However, if a particular
mapping rule is already known by the mediation engine, it can be accessed by its
corresponding URIL.

The mapping rules are specified in AML; however, the rules in mapping language
cannot be stored in triple space as it is. The mapping rules in AML are grounded as
a set of RDF triples with a URI to access it (i.e., named graph). New mapping rules
specified in AML that have been added by users using the management API are
grounded to RDF triples using the groundRule operation.

When a particular mapping rule is known and is required to be executed, the ex-
ecuteRule operation is used internally by the mediation engine to execute the map-
ping rule and to actually carry out the transformation of a particular instance from
the source schema to the target schema. The mapping in RDF is basically resource
to resource mapping. So, for a particular resource a search is made to find if there
is some mapping rule that may exist to provide mapping to the corresponding other
resource. If the resource is simple (i.¢., based on simple data types like integer, float,
character, string) then the mapping is also simple and straightforward. However, if
the resource is based on some complex type, then mapping is also complex and it
has to be specified in the mapping rule how it should be transformed from the source
schema to the target schema.

11.2.3 Coordination Layer

The coordination layer has three responsibilities: (1) local triple space operations,
such as reading and writing named graphs are executed by accessing the local data
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access layer and by consistently propagating changes to other triple space kernels in-
volved; (2) changes of a space originating from other triple space kernels are recog-
nized and applied to the local data access layer; and (3) remote triple space kernels
involved that span a certain space are discovered automatically in the network.

Consistent concurrent access to named graphs is provided via transactions. In
principle both optimistic and pessimistic transactions are applicable for triple space
computing; however, they are not exchangeable owing to differences in their seman-
tics. We decided to support optimistic transactions, because they provide a higher
degree of concurrency, if read operations are more frequent than write operations,
which results in a higher throughput, because they are free of deadlocks without
the introduction of additional, semantically sophisticated timeout parameters and,
finally, because they enable a pragmatic integration of a data access layer, which
itself does not support a transaction interface.

The prototype implementation of the coordination layer is based on the Coordi-
nated Shared Objects Spaces (CORSO) [130] middleware. CORSO is a peer-to-peer
implementation of a virtual shared data space, which allows reading and writing
structured, shared data objects. It has a built-in distributed transaction manager and
distributes spaces via an asynchronous, primary-based replication protocol. In the
triple space computing prototype, triple spaces and named graphs are mapped to dis-
tributed CORSO data structures. Triple space computing operations like reading and
writing named graphs are translated to algorithms on these CORSO data structures.
CORSO further provides a notification mechanism to get informed about changes in
the shared space. The coordination layer uses CORSO notifications to react to in-
serted or removed named graphs and to asynchronously update the underlying data
access layer. The discovery of triple space kernels involved in spanning a triple space
is based on the Domain Name System (DNS) for wide area networks and on a new
protocol based on UDP multicast and CORSO for local area networks.

11.2.4 Data Access Layer

Any triple space implementation requires a storage and retrieval framework to (1)
ensure the desired persistency, (2) to support semantic template matching based on
Semantic Web query languages, and (3) to provide at least a limited amount of rea-
soning. In order to bind arbitrary data stores and query engines to triple space kernels
we define a sata access layer which defines operations for storing, retrieving, and
deleting RDF graphs.

The prototype implementation of the data access layer is based on Yet Another
RDF Store (YARS) [97], a lightweight persistence framework developed in Java at
DERI Galway which uses optimized indexes for better query performance. Besides
the noteworthy performance, the fact that the consortium has access to the source
code and the implementers through STI Innsbruck has resulted in YARS in particular
being chosen as it is constructed to store quads or contextualized triples instead of
plain RDF triples. This allows for direct usage of the chosen data model based on
named graphs [42].
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One of the main tasks of the data access layer is to translate templates into N3QL
queries for YARS. To keep the data access API (DAPI) as simple as possible it
only defines one operation to retrieve data: retrieve(URI ts, Transaction tx, Template
t):Graph. The triple space computing API, however, allows a space user to retrieve
data either based on templates or by use of the graph name. As the DAPI does not
directly support an interface for URI-based retrieval it is also necessary to adapt the
operations layer in order to transform those requests into templates. First the URI
has to be packed into a graph pattern template according to part of the operations
layer processing. The request is then forwarded in the form of the template to the
data access layer, where the template is transformed into a N3QL query that can be
sent to the YARS servlet.

11.2.5 Triple Space Kernel Component Interaction

This section explains how each operation is executed and how components of the
triple space kernel are involved in the execution of a certain operation. Components
in triple space computing interact with each other either locally or remotely. To en-
able such interaction between components, two different types of interfaces are de-
fined. They are native or local interface and remote interface. Before delving into the
details of component interaction, the interaction interfaces are described below.

The native interface is provided by the triple space kernel. It reflects the interfaces
of all the available components providing a mechanism for them to interact with each
other. It is the main interface for components to interact with each other locally. That
is, all the components should implement this interface.

The remote interaction between components in triple space computing can take
place through any of the following proven technologies: HTTP, RMI, SOAP, and
CORSO. Therefore, the triple space computing remote interface should provide in-
terfaces that are compatible with the ones provided by the aforementioned technolo-
gies. In triple space computing, HTTP and RMI are taken into consideration at the
first stage while keeping the possibility of extending it with other technologies. The
remote interface duplicates and or translates operations provided by the native or
local interface with the mechanisms used.

Figure 11.2 describes the involvement of components and their interaction while
executing a read operation. The black arrows indicate the direction of the component
interaction and the gray arrows indicate the invocation of some operation will even-
tually return some result. The numbers at the side of the arrows correspond to the
number in the text below.

e The participant presents a read request to the operations layer by invoking the
following operation through the local interface:

read (spaceURI, template)

e The operations layer invokes security internally, if needed, to check access con-
trol. If the operation is approved, the information is passed to the coordination
layer.
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Figure 11.2. Interaction of components for a read operation

e The coordination layer uses a mediator, if needed, to resolve heterogeneity and
invokes the data access layer.

e The data access layer accumulates requested data from different data sources.
Through the interfaces provided by this layer, multiple data sources can be
accessed.

11.3 Role of Triple Space Computing in SESA

The currently used communication paradigm in Semantic Web Services (is synchro-
nous, i.e., users communicate with Semantic Web Services and Semantic Web Ser-
vices communicate with real-world Web Services by sending synchronous messages.
The problem with synchronous communication is that it requires a quick response as
it makes the sender wait until the response is received, which is not possible in case
of the execution process in Semantic Web Services as it involves heavy processing
of semantic descriptions in terms of discovery, selection, composition, mediation,
and execution. This problem has been overcome by introducing triple space comput-
ing as a semantics-based asynchronous communication paradigm for communication
and coordination of Semantic Web Services. WSMX is our reference implementa-
tion for Semantic Web Services in which the triple space computing middleware is
being integrated. Using triple space computing in WSMX enables support for greater
modularization, flexibility, and decoupling in communication and coordination and
for wide distribution and easy access. Multiple triple space kernels coordinate with
each other to form a virtual space that acts as underying middleware which is used
for communication by reading and writing data.

The integration of WSMX and triple space computing is being done in different
ways [193]: (1) enabling management of components in WSMX using triple space
computing, (2) allowing external communication grounding in WSMX, (3) providing
resource management, and (4) enabling communication and coordination between



248 11 Storage and Internal Communication

. Execution
Manager

TS Kemel
% o Composition}, Discovery
C - .‘.
s
’D'/,,é{,
-._ ||communication . .
Other U . Manager .. Selection
Semantic T
Web Sh@ \ i
oot L e
iple Space Triple Space “-..
TS Kernel «--»TS Kernel "I'_r_p_ 2ope -+ TS Kernel + - e -*TS Kernel

coordination \ coordination

-

B @ G

Figure 11.3. Triple space computing (TSC) as underlying communication middleware for
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different interconnected WSMX systems. Each of the integration aspects is described
in the subsections below. In summary, triple space computing acts as middleware
for WSMX, Web Services, different other Semantic Web applications, and users to
communicate with each other, as shown in Fig. 11.3.

11.3.1 Intra-SESA Communication

WSMX has a management component that manages the overall execution of the
system by coordinating different components on the basis of dynamic execution
semantics. In this way a clear separation between business and management logic in
WSMX has been made. The individual components have clearly defined interfaces
and have component implementation well separated from communication issues.
Each component in WSMX has a wrapper to handle the communication issues. The
WSMX manager and wrappers of the individual components need to be interfaced
with the triple space in order to enable the WSMX manager to manage the compo-
nents over the triple space. The communication between the manager and wrappers
of the components will be carried out by publishing and subscribing the data as a
set of RDF graphs over the triple space. The wrappers of components that handle
communication will be interfaced with triple space middleware. The WSMX man-
ager has been designed in such a way that it can distinguish between the data flows
related to the business logic (execution of components based on the requirements of
a concrete operational semantics) and the data flows related to the management logic
(monitoring the components, load balancing, instantiation of threads, etc.). There
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are two ways for WSMX components to access a triple space core, i.e., heavy clients
embed the triple space core as a Java package and the application and a triple space
core run in the same Java virtual machine. In this case CORSO [130] and YARS [97]
run times need to be deployed together with the heavy client application. The second
way is to deploy a standalone triple space kernel as a server, which may be accessed
by multiple light clients via remoting. Usage of light clients in the case of commu-
nication and coordination within the WSMX system is recommended as it will keep
the complexity level of the wrappers of the components and the access of the light
client embedded in wrappers will be local to the triple space kernel.

There are two ways for the WSMX components to access a triple space core,
i.e., heavy clients embed the triple space core as a Java package and the application
and the triple space core run in the same Java virtual machine. The second way is
to deploy a standalone triple space kernel as a server, which may be accessed by
multiple light clients via remoting. Both scenarios can work. However, in order to
ensure maximum decoupling of WSMX and triple space computing middleware, we
have used the light clients. The light clients of triple space (also called as triple space
proxy) have been embedded in the wrappers of each WSMX component. This will
also keep the complexity level of wrappers of components to a certain limit. It will
also give the flexibility that triple space light clients embedded in wrappers can either
be local or remote to the triple space kernel.

The WSMX can also have the triple space kernel local to it, which will be the
simplist scenario. In this case, sophisticated mechanisms for providing remote access
(through RMI or HTTP) as well as distributed security and trust are not necessary.
As shown Fig. 11.4, the triple space proxies (basically clients) will be embedded
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Figure 11.4. Dynamic component management in Web Services Execution Environment
(WSMX) using TSC
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in the wrappers of the components . The transport module of the wrapper of each
component will access the triple space through simple APIs. These APIs will im-
plement the operations provided by the triple space API [183]. WSMX components
will benefit from all major aspects of the triple space kernel, i.e., publish—-subscribe
mechanism, RDF-based semantic template matching, data and resource handling, as
well as persistent storage. Bussler [34] envisions that the WSMX manager will co-
ordinate all the reading and writing requests received, will dispatch the request to
the appropriate functional module (data module or query module), will monitor the
appropriate execution of the rest of the elements of the system, and will periodically
check the coherence of the information stored in the space.

Figure 11.5 shows a closer look at the interfacing of the WSMX manager with
other components of WSMX (i.e., in this case, discovery component). The architec-
ture of WSMX [95] defines a clear separation of communication issues of com-
ponents and the WSMX internal business logic (it can also be called execution
semantics [99]). The figure is provide to make the fact clear that adapting triple
space computing for communication in WSMX will not change any of its execution
semantics or WSMX internal component logic, any of the interfaces of components,
nor any implementation of components. It does not define for the WSMX manager
which component to invoke, and when. It rather defines how to invoke (or commu-
nicate, in general) with a particular component, by reading and writing data in the
triple space.

Anytime a triple is published in the space, this module will check if related sub-
scriptions are stored. If there are related subscriptions, the publish—subscribe module
will notify the consumers of those subscriptions that there are triples available. On
the basis of the management information collected by the management module, the
publish—subscribe module can prioritize the order of notifications and deliver first
to those components which have less workload. The query module will verify the
correctness (syntax level) of the query received on the basis of a standard query lan-
guage. The operation layer in the triple space kernel will execute all the operations
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that are related to the manipulation of data in the space (basically writing, modifying,
and deleting the triples). It manages the version of the message communicated over
the triple space and provides a URI to it, which can be referred to when required,
rather that sending the message again. If a message or semantic description of a Web
service is being communicated frequently between two or more participants, instead
of sending it again and again, the URI of the message could be used to save time.
Moreover, using triple space computing for component management, also brings
other advantages, like complexity reduction, as the underlying triple space comput-
ing middleware incorporates features like publish—subscribe mechanisms which the
WSMX manager can reuse for its intermediate even data management.

11.3.2 Distributed and Scalable Storage in SESA

WSMX contains different repositories to store ontologies, goals, mediators, and Web
Services descriptions as WSML-based files. The internal repositories of WSMX are
needed to be made optional and enable the storage of the WSML-based data as a set
of RDF named graphs in triple space storage. This is mainly concerned with transform-
ing the existing representation of data in the form of WSML into an RDF represen-
tation. The repository interfaces need to be interfaced with triple space middleware.

The resource manager in WSMX currently manages the persistent storage of
data in the repositories. The resource manager provides a heterogeneous interface for
WSMX. The component implementing this interface is responsible for storing every
data item WSMX uses. The WSMO API provides a set of Java interfaces that can
be used to represent the domain model defined by WSMO. WSMOA4] [2] provides
both the API itself and a reference implementation, but it is not a prerequisite that
implementations of the resource manager use WSMOA4J. Currently WSMX defines
interfaces for six repositories. Four of these repositories correspond to the top-level
concept of WSMO i.e., Web Services, ontologies, goals, and mediators. The fifth
repository is used by WSMX for non-WSMO data items, e.g., events and messages.
Finally, the sixth repository stores WSDL documents used to ground WSMO service
descriptions to SOAP or SOAP/HTTP.

The first four repositories, Web Services, goals, mediators, and ontologies can
be provided by grounding to triple space for the top-level entities based on some
mappings that have been defined by the WSML Working Group [132]. The resource
manager will be provided with RDF grounding support so that while storing data, the
local repositories could be bypassed and the WSML-based data could be stored in
the triple space with URISs (to identify the data afterwards). This will help make the
process of persistent storage independent of WSMX. Moreover, it will help further
by exploiting the large triple space storage to store the data. There will be no need to
maintain local repositories as well. It will not affect the current design of components
since the resource manager interface will remain the same. However, the grounding
extensions will help in transforming and storing data in the triple space. Figure 11.6
shows the WSMX resource manager’s bindings with triple space based storage.

The storage of WSMO top-level entities in the triple space will help in enhanc-
ing and fastening the process access of the data items afterwards. For instance, in
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the current discovery mechanism of WSMX, the WSML reasoners have to reason
on each and every Web service description available in the local repositories, which
takes a significant amount of time. When the Web Services descriptions are stored
over triple space, the template matching based simpler reasoning will be used as a
first step in order to filter out the most relevant and possibly required Web service
descriptions. The filtered Web Services descriptions based on template based match-
ing over the triple space are retrieved and converted back to WSML to be reasoned
over by WSML reasoners. It makes the process of discovery simpler and faster by
performing the reasoning operation only on relevant Web service descriptions rather
than on all. For the fifth type of repository (i.e., for events, intermediate message),
data will be stored as content in simple RDF triples as there is no need to perform
any kind of reasoning on events or intermediate data. For the sixth type of repository
(i.e., for WSDL description), WSDL RDF mappings proposed in [128] will be used
to store the WSDLs in the triple space.

11.3.3 External Communication for SESA

WSMX acts as semantic middleware between users and real-world Web Services.
Currently, owing to the existence of the message-oriented communication paradigm,
users communicate with WSMX and WSMX communicates with Web Services
synchronously. The external communication manager of WSMX is needed to pro-
vide support to communicate over triple space. The interfaces for sending and re-
ceiving external messages by WSMX are needed to provide grounding support to
alternatively communicate over triple space. This needs to be resolved by addressing
several issues, i.e., the invoker component in WSMX is needed to support WSDL and
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SOAP communication binding over triple space. The entry point interfaces will be
interfaced with triple space middleware in order to provide the glue between existing
Web Services standards and triple space computing.

The communication manager is responsible for dealing with the protocols
for sending and receiving messages to and from WSMX. Its external behavior is
accessed through the invoker and receiver interfaces. The WSMX receiver inter-
face expects the contents of all messages it receives to be expressed in WSML.
Each WSML message may represent a goal to be achieved or itmay be a message
corresponding to a choreography or orchestration instance that already exists. The
communication manager accepts the message and handles any transport and security
protocols used by the message sender. The execution semantics of WSMX de-
termines how the WSML message should be handled on the basis of the defined
execution semantics of the system. The invoker is used by the execution seman-
tics of WSMX when a Web service needs to be invoked. The invoker receives the
WSMO description of the service and the data that the service expects to receive.
It is responsible for making the actual invocation of an operation on a service. In
the majority of existing Web service implementations, this means ensuring that
the semantic description both of the data and the behavior of the Web service are
grounded to the corresponding WSDL descriptions. It is anticipated that a separate
grounding component to work with the invoker will be required in future versions of
WSMX. The external behavior of the system is defined in a new WSMOA4J interface
called EntryPoint. The intent is that the EntryPoint interface be implemented by any
WSMO-compliant Semantic Web Services environments to facilitate seamless run-
time integration of these systems. The EntryPoint interface represents the external
behaviour of the system. It is currently implemented by the communication manager.

The communication manager will also be provided with triple space based
grounding support. It will help in providing an additional or alternative triple space
based access interface to WSMX. It will enable triple space clients to submit goals
to WSMX via triple space, which will bring a real sense of asynchronous commu-
nication of triple space because normally goal execution in WSMX (performing ser-
vice discovery, selection, composition, mediation, and invocation) takes a significant
amount of time. When the service requesters will be able to submit the goals to
WSMX over triple space, it will not make them hang up with WSMX until the goal
has been executed and will make the communication process of service requesters
with WSMX more flexible and reliable. Although it is not our intention to replace
the message-passing communication process which WSMX makes use of in order
to invoke Web Services, we aim to provide WSMX with an alternative triple space
based interface to our intelligent middleware, as required in the Enterprise Appli-
cation Integration Environment described in the WSMX specifications. Having said
that, it is possible that future research on asynchronous communication and scalabil-
ity in open environments like the Web will eventually make our approach replace the
current message-passing communication process and Web Services stack completely
and will enable WSMX to invoke end-point Web Services over triple space as well.
Figure 11.7, shows a big picture of the external communication with WSMX over
triple space.
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Figure 11.7. External communication in WSMX using TSC

11.3.4 Inter-SESA Communication

After enabling the WSMX manager to perform communication and coordination
of components internally, the next step will be to enable the communication and
coordination of different WSMXs over triple space, i.e. forming a cluster of differ-
ent interconnected WSMX nodes to support distributed service discovery, selection,
composition, mediation, invocation, etc. The communication model used in the cur-
rent implementation of WSMX is synchronous. Synchronous communication is ben-
eficial when immediate responses are required. Since WSMX deals with Web service
discovery, mediation, and invocation, immediate responses are usually not available.
In such situations, the synchronous communication will be costly as it forces the sys-
tem (component) to remain idle until the response is available. In order to minimize
such an overhead imposed by synchronicity, the triple space can serve as a com-
munication channel between WSMXSs, thereby introducing synchronicity between
communicating parties. The triple space supports purely asynchronous communica-
tion that optimizes performance as well as communication robustness.

Figure 11.8 shows the idea of having different WSMX systems interconnected
to each other over triple space. This will help the WSMX in providing distributed
service discovery, selection, composition, mediation, and invocation. There can be
the possibility that different WSMX systems are running at different locations over
the globe and contain different information (i.e., semantic description of commercial
Web Services, mediation rules, ontologies, and goals). The service requester local to
a particular WSMX will not be aware of other WSMX systems and the data contained
by other WSMX systems. In this case, it will enable different WSMX systems to be
aware of each other and to access the data of other WSMXs over triple space, or
redirect the goals to other WSMXGs.
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Figure 11.8. Inter-WSMX communication for WSMX using TSC

11.4 Evaluation

The integration of WSMX and triple space computing has been proposed in four
major aspects, i.e., component management of WSMX, inter-WSMX communica-
tion and coordination, resource management in WSMX for providing persistent stor-
age, and external communication. So far, the first major step of WSMX and triple
space computing has been achieved by building the integrated prototype that enables
WSMX to perform its internal component management using triple space computing
middleware. It enables the WSMX manager to exploit the benefits provided by triple
space computing middleware as mentioned in previous sections. There are certain
evaluation strategies that have been planned to compare the current state of WSMX
with that of integrated WSMX-triple space computing systems.

11.4.1 Comparing Resource Availability

The evaluation includes analyzing the availability of resources. While the WSMX
manager schedules the goal execution by coordinating between the components, the
triple space enables the WSMX manger to be released from waiting for a response
and makes it available to facilitate scheduling of other incoming goal execution
requests while the previous goal is already being executed. This will include the
calculation of results obtained by submitting goals to WSMX and checking for avail-
ability of the WSMX manager to schedule other upcoming goal execution requests.

11.4.2 Analyzing the Performance on Concurrent Execution of Goals

The comparison is further planned to include the overall execution time taken by
the WSMX manager. The performance of the WSMX manager will be analyzed by
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increasing the number of goals to be executed. The overall time taken to execute the
goal (for WSMX using SOAP as the underlying communication protocol) is sup-
posed to be increased more rapidly than for WSMX manager using the triple space
based communication. This improvement can be achieved owing to the decoupling
that will be achieved between the WSMX manager and other individual components
of WSMX while communicating over triple space, and enables the WSMX manager
sustain to execute a larger number of goals simultaneously.

11.4.3 Comparing Communication Overhead

While performing the component management over triple space, the WSML descrip-
tions are converted into RDF named graphs and then are published over triple space.
This involves some extra steps to be performed than for typical message-based com-
munication of the WSML description. These extra steps include conversion of the
WSML description into RDF named graphs, publishing RDF named graphs over
triple space, retrieving RDF named graphs from triple space, as well as converting
RDF named graphs back to WSML. Hence, these extra steps enforce some overhead
on the communication of two communicating components. Some experimental tests
have to be performed to get an idea of the overhead.

11.4.4 Communication Overhead Versus Time Saved in Concurrent Goal
Execution

After the analysis of the behavior of the increase in availability of resources and
the increase in the performance of overall goal execution by WSMX while using
triple space computing for its internal components management, it is further planned
to analyze the overhead caused by the required transformation of WSML data into
RDF, communicated between the components of WSMX during goal execution. The
idea is to compare the time saved in multiple goal execution and the increase in
resource availability versus the overhead caused in serializing WSML to RDFE.

11.5 Summary

In this chapter, the storage and internal communication issues of SESA were dis-
cussed. WSMX as a reference implementation of the WSMO conceptual model for
Semantic Web Services, based on the principles of service-oriented computing, has
been provided with a resource manager service that provides a homogenous interface
to the WSMX to persistently store its data. The resource management layer separates
the WSMX from the storage issues. It was further explored how the storage service
can be used to bring the communication in WSMX on the basis of the persistent
publication and reading of semantic data. The concept of triple space computing was
also introduced, which is a semantic extension of current tuple space based commu-
nication and coordination paradigms.
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Moreover, the use of the triple space computing paradigm for communication and
coordination of Semantic Web Services was presented. First of all, we presented the
key integration aspects of both communication and coordination, i.e., WSMX as our
reference implementation of Semantic Web Services, and the triple space computing
kernel. The integration is aimed in terms of using triple space computing for internal
component management of WSMX, inter-WSMX communication management, re-
source management, and external communication management. We further proposed
the interfacing of the WSMX component manager with the triple space computing
kernel and described our implementation. We also listed the analysis strategies of
comparison of the current state of WSMX and the WSMX-triple space computing
integrated system, to analyze how WSMX can improve its resource availability and
time taken in overall goal execution, by using triple space computing for manage-
ment of its internal components. Moreover, using triple space computing for com-
ponent management can also bring other advantages, like complexity reduction, as
underlying triple space computing middleware incorporates features like publish—
subscribe mechanisms which the WSMX manager can reuse for its intermediate even
data management.

The next steps are to explore three proposed possibilities of integration of WSMX
and triple space computing. This will include design the interfacing of the triple
space kernel with the resource manager and the external communication manager of
WSMX, with the assumption that it will help WSMX in improving its resource man-
agement for persistent storage of data, as well as decoupling of WSMX from external
service requesters and applications. It will also include the design of a distributed co-
ordination strategy for the WSMX system to manage and improve the inter-WSMX
communication and coordination using triple space computing.
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SESA Application

In this chapter we show how the Semantically Enabled Service-oriented Architecture
(SESA) can be applied to real-world scenarios from the business-to-business (B2B)
integration domain and the telecommunications domain. We describe how business
services can be modeled semantically and how these services can be executed on
the SESA middleware. We show how service discovery operates on the semantic
descriptions of services as well as how the middleware performs the conversation
between services with data and process mediation applied where necessary.

12.1 Case Scenario: B2B Integration

Interenterprise integration is an essential requirement for today’s successful busi-
ness. With the aim of overcoming heterogeneity, various technologies and standards
for the definition of languages, vocabularies and integration patterns are being de-
veloped. For example, RosettaNet defines standardized partner interface processes
(PIPs), which include standard intercompany choreographies (e.g., PIP3A4 Request
Purchase Order), and the structure and semantics of business messages. Although
such standards certainly enable B2B integration, they still suffer from several draw-
backs. All partners must agree to use the same standard and often the rigid configu-
ration of standards makes them difficult to adapt to local business needs.

The SESA when applied to the B2B integration can help in resolving interop-
erability problems between business partners and in maintaining the flexible and
more reliable integration. In order to demonstrate the value of the SESA in the B2B
integration domain, we implemented a scenario from the SWS Challenge.! The SWS
Challenge aims to establish a common understanding, evaluation scheme, and test-
bed to compare and classify various approaches to integration of services in terms of
their abilities as well as shortcomings in real-world settings.

As Fig. 12.1 depicts, the scenario introduces various service providers (such as
Racer and Mueller) offering various purchasing and shipment options for various

! http://www.sws-challenge.org
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Figure 12.1. Running example

products through the e-marketplace called Moon. On the other hand, there is a ser-
vice requester called Blue who intends to buy and ship a certain product for the
best possible price. The technology that Moon operates on is the middleware system
enabling the SESA. The following are basic characteristics of the scenario:

Back-end systems. Service requesters and providers use various back-end sys-
tems for handling interactions in their environment. For example, Mueller uses
a customer relationship management (CRM) system and an order management
system (OMS), while Blue uses a system based on the RosettaNet? standard.
RosettaNet is the B2B specification defining standard components called PIPs,
which include standard intercompany choreographies (e.g., PIP3A4 Request Pur-
chase Order), and structure and semantics for business messages. Service re-
questers and service providers maintain the integration with their back-end sys-
tems through Web Services (adapters for their back-end systems), while at the
same time they are responsible for their integration with the middleware through
semantic descriptions of services and/or through interfaces with the middleware.
Modeling and publishing of semantic descriptions. Engineers on the re-
quester’s and the provider’s side model services and requests using the WSMO
model and publish them in the Moon middleware repositories. Engineers of the
Moon define mappings between different ontologies in repositories and store
them in the middleware.

Interoperability issues. Engineers on the requester’s and the provider’s side
model services independently, meaning that they use different ontologies as
well as different descriptions of choreographies. For example, Blue models
the request and response messages according to the RosettaNet PIP3A4 Re-
quest Purchase Order specification, while Mueller models the messages using
proprictary information and choreography specifications of the CRM/OMS

2 http://www.rosettanet.org
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systems. For a request message sent by Blue, Mueller must perform several
interactions with the back-end systems, such as identify a customer in the CRM,
open the order in the OMS, add all items to be ordered to the OMS, and close
the order in the OMS.

The scenario runs as follows. All business partners first model their business services.
After that, Blue sends the purchase order request captured in the WSMO goal to the
middleware system, which on reception of the goal executes the achieveGoal execu-
tion semantics including: (1) discovery, (2) selection, and (3) orchestration. During
discovery, the matching is performed for the goal and potential services at abstract
level as well as instance levels (abstract-level discovery allows one to narrow down
the number of possible Web Services matching a given goal, while instance-level dis-
covery carries out detailed matchmaking considering instance data of the service and
the goal). During selection, the best service is selected (in our case Mueller service)
on the basis of preferences provided by Blue as part of the WSMO goal description.
Finally during orchestration, the execution and conversation of Blue and Mueller ser-
vices is performed by processing of descriptions of choreographies from Blue’s goal
and Mueller’s service.

12.1.1 Modeling of Business Services

In this section we show how Blue and Mueller systems can be modeled using WSMO
and WSML formalisms. The modeling phase involves the following steps: (1) Web
Services creation, when underlying services such as Web Services with WSDL
descriptions are created, and (2) Semantic Web Service and goals creation, when
semantic service and goal descriptions are created using WSMO. For our scenario,
we create two services, namely, PIP3A4 and CRM/OMS service (we model both
systems as one business service):

o Web Services creation. This step involves cthe reation of Web Services as
adapters to existing systems, i.e., WSDL descriptions for these adapters, includ-
ing XML Schema for messages, as well as definitions of interfaces, their opera-
tions, binding, and end point. In our scenario, we use two adapters: (1) PIP3A4
adapter and (2) CRM/OMS adapter. These adapters allow Mueller’s CRM and
OMS systems to connect to the middleware, and perform lifting and lowering
functionality for XML Schema and ontologies according to the grounding defin-
itions of WSMO services.

o Semantic Web Services and goals creation. In order to create Semantic Web
Services and goals, the ontologies must be created (or reused) together with non-
functional, functional, and interface description of services. In addition, a groun-
ding must be defined from the semantic (WSMO) descriptions to the syntactic
(WSDL) descriptions. Semantic Web Services and goals are described according
to WSMO service and WSMO goal definitions, respectively. We create a WSMO
goal as a PIP3A4 service and a WSMO service as a CRM/OMS service. Please
note that WSMO goal and WSMO service have the same structural definition but
differ in what they represent. The difference is in the use of defined capability
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and interface — WSMO goal describes a capability and an interface required by a
service requester, whereas WSMO service describes a capability and an interface
provided by a service provider. In our scenario, this task is performed by domain
experts (ontology engineers) using “The Web Service Modeling Toolkit”. In this
section we further elaborate on this step.

Creation of Ontologies and Grounding

One possible approach towards creation of ontologies would be to define and main-
tain one local domain ontology for Moon’s B2B integration. This approach would
further allow handling message-level interoperability through the domain ontology
when lifting and lowering operations would be defined from the underlying message
schema to the domain ontology. Another option is the definition of independent on-
tologies by each partner and its systems. In our case, these are different ontologies for
RosettaNet and ontologies for CRM/OMS systems. The message-level interoperabil-
ity is then reached through mappings between the ontologies used, which are defined
during design time and are executed during run time. Although both approaches have
their advantages and limitations, we will use the latter approach in our scenario. The
main reason is to demonstrate mediators’ aspects to integration of services which are
available as independent and heterogeneous services.

Listing 12.1. Lifting from XML to WSML

/* Lifting rules from XML message to WSML «/

instance PurchaseOrderUID memberOf por#purchaseOrder

por#globalPurchaseOrderTypeCode hasValue "< xsl:value—of select<"dict:
GlobalPurchaseOrderTypeCode”/>"

5 por#isDropShip hasValue

6 IsDropShipPo<xsl:for—each select«"po:ProductLineltem”>

7 por#productLineltem hasValue ProductLineltem<xsl:value —of select«—"position()”/>

8

9

O ORI

</xsl:for—each>
<xsl:for—each select«"core:requestedEvent”>
10 por#requestedEvent hasValue RequestedEventPo
11 </xsl:for—each>
12 <xsl:for—each select«"core:shipTo”>

13 por#shipTo hasValue ShipToPo

14 </xsl:for—each>

15 <xsl:for—each select«<"core:totalAmount”>
16 pori#totalAmount hasValue TotalAmountPo
17 </xsl:for—each>

20 /4 message in WSML after transformation */

2 instance PurchaseOrderUID memberOf por#purchaseOrder

23 por#globalPurchaseOrderTypeCode hasValue "Packaged product
2 por#isDropShip hasValue IsDropShipPo

25 por#productLineltem hasValue ProductLineltem1

26 por#productLineltem hasValue ProductLineltem2

27 por#requestedEvent hasValue RequestedEventPo

28 por#shipTo hasValue ShipToPo

29 pori#totalAmount hasValue TotalAmountPo
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We assume that all ontologies are not available up-front and they need to be cre-
ated by an ontology engineer. The engineer takes as a basis the existing standards and
systems, namely, RosettaNet PIP3A4 and CRM/OMS Schema, and creates PIP3A4
and CRM/OMS ontologies, respectively. When creating ontologies, the engineer de-
scribes the information semantically, i.e., with richer expressivity as opposed to the
expressivity of the underlying XML Schema. In addition, the engineer captures the
logic of getting from the XML Schema level to semantics introduced by ontologies
by lifting and lowering rules executed on nonsemantic XML Schema and ontolo-
gies, respectively. These rules are part of the grounding definition between WSMO
and WSDL descriptions and physically reside within adapters. In Listing 12.1, an
example of the lifting rules and the resulting WSML instance is shown for an extract
of a RosettaNet PIP3A4 message.

Creation of Functional and Nonfunctional Descriptions

WSMO functional description (modeled as WSMO service capability) contains the
formal specification of functionality that the service can provide, which is a defini-
tion of the conditions on service “inputs” and “outputs” which must hold before and
after the service execution, respectively. Functional description for our back-end sys-
tems contains conditions that input purchase order data must be of a specific type and
contain various information, such as customer ID, items to be ordered, etc. (this in-
formation is modeled as preconditions of the service). In addition, the service defines
its output as purchase order confirmation as well as the fact that the order has been
dispatched. Functional description of service is used for discovery purposes in order
to find a service which satisfies the user’s request. Nonfunctional properties contain
descriptive information about a service, such as author, version, or information about
service level agreements, quality of services, etc. In our example, we use the non-
functional properties to describe user preference for service selection. In our case,
the Blue company wants to buy and get shipped a product for the cheapest possible
price which is encoded in the WSMO goal description.

Creation of Interfaces and Grounding

Interfaces describe service behavior, modeled in WSMO as (1) choreography de-
scribing how service functionality can be consumed by the service requester and (2)
orchestration describing how the same functionality is aggregated out of other ser-
vices (in our example we only model choreography interfaces as we currently do
not use WSMO service orchestration). The interfaces in WSMO are described us-
ing abstract state machines defining rules modeling interactions performed by the
service, including grounding definition for invocation of underlying WSDL opera-
tions. In our architecture and with respect to types of interactions between service
requester/provider and the middleware, we distinguish two types of choreography
definitions, namely, late-binding choreography and execution choreography. List-
ing 12.2 shows a fragment depicting these two choreographies for the CRM/OMS
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service. The first choreography, marked as DiscoveryLateBinding Choreography, de-
fines the rule for how to get the quote for the desired product from the purchase
order request (here, the concept PurchaseQuoteReq must be mapped to correspond-
ing information conveyed by the purchase order request sent by Blue). This rule is
processed during the service discovery and the quote information obtained is used
to determine whether a concrete service satisfies the request (e.g., if the requested
product is available, which is determined through quote response). The second chore-
ography, marked as ExecutionChoreography, defines how to get information about
the customer from the CRM system. The decision on which choreography should
be used at which stage of execution (i.e., service discovery or conversation) is de-
termined by the choreography namespace (in the listing this namespace is identified
using prefixes dIb# for discovery late-binding and exc# for execution, respectively).
In general, choreographies are described from the service point of view. For example,
the rule in line 21 says that in order to send the SearchCustomerResponse message,
the SearchCustomerRequest message must be available. By executing the action of
the rule (add(SearchCustomerResponse)), one invokes the underlying operation with
the corresponding message according to the grounding definition of the message,
which in turn results in receiving instance data from the Web service.

Listing 12.2. Customer relationship management system/order management system
choreography

1/ late—binding choreography for service discovery stage /
2 choreography dib#DiscoverylLateBindingChoreography

3 stateSignature

4 in mu#purchaseQuoteReq withGrounding { ... }

5 out mu#PurchaseQuoteResp withGrounding { ... }
6

7

8

9

forall {?purchaseQuoteReq} with (
?purchaseRequest memberOf mu#PurchaseQuoteReq
) do
10 add( # memberOf mu#PurchaseQuoteResp)
11 endForall

14 /% execution choeography for service execution stage */
15 choreography exc#ExecutionChoreography

16 stateSignature
17 in mu#SearchCustomerRequest withGrounding { ... }
18 out mu#SearchCustomerResponse withGrounding { ... }

20  transitionRules MoonChoreographyRules

21 forall {?request} with (

2 ?request memberOf mu#SearchCustomerRequest
23 ) do

2% add(-# memberOf mu#SearchCustomerResponse)

25 endForall

Creation of Ontology Mappings

Mappings between used ontologies must be defined and stored in the middleware re-
positories before execution. In Listing 12.3, the mapping of the searchString concept
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of the CRM/OMS ontology to concepts cusomterld of the PIP3A4 ontology is
shown. The construct mediated(X,C) represents the identifier of the newly created
target instance, where X is the source instance that is transformed, and C is the target
concept we map to. Such format of mapping rules is generated from the ontology
mapping process by the WSMT ontology mapping tool.

Listing 12.3. Mapping rules in WSML

1 axiom mapping001 definedBy
2 mediated(X, o2#searchString) memberOf o2#searchString : —
3 X memberOf o1#customerld.

|
|
L

12.1.2 Execution of Services

In this section we describe the execution phase run in the middleware for our exam-
ple. This phase is depicted in Fig. 12.2 and implements the AchieveGoal execution
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Figure 12.2. Sequence diagram
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semantics. We further divide this phase into the following stages: (1) sending Req-
uest, (2) late-binding — discovery, selection, and conversation set-up, (3) execution —
conversation with service provider, and (4) execution — conversation with service
requester.

Sending Request

A RosettaNet PIP3A4 Request Purchase Order message is sent from Blue to the entry
point of the PIP3A4 adapter. In the PIP3A4 adapter, the purchase order XML mes-
sage is lifted to WSML according to the PIP3A4 ontology and rules for lifting using
XSLT. Finally, a WSMO goal is created from the purchase order message, includ-
ing the definition of the desired capability and choreography as well as instance data
(this goal is created as an abstract goal which contains separately defined data). The
capability of the requester (Blue) is used during the discovery process, whereas the
goal choreography describes how the requester wishes to interact with the environ-
ment. After the goal has been created, it is sent together with the data to middleware
by invoking the AchieveGoal execution entry point.

Late-Binding — Discovery, Selection, and Conversation Set-Up

The AchieveGoal execution entry point is implemented by the communication ser-
vice, which facilitates inbound and outbound communication with the middleware.
The AchieveGoal execution entry point starts the AchieveGoal execution semantics
which performs the following steps:

e The parser parses the message into the internal memory representation.

e The discovery finds appropriate services by processing their abstract descrip-
tions, that is, by matching capability descriptions of the goal with each service’s
capability descriptions from the repository.

e When a match is found at the abstract level, the match is further performed at
the instance level. For this purpose, discovery fetches some additional data from
the service requester through processing of the discovery late-binding interface
of each candidate service (if an interface exists). Listing 12.2 shows such an
interface for the Mueller service. Through this interface, discovery obtains some
additional data which is then used for fine-grained querying of the knowledge
base containing all instance data of the goal and the candidate service. During
this process, interactions with data mediation as well as communication services
are also performed (for brevity these are not shown in Fig. 12.2). As a result, a
list of the services all matching at abstract and instance levels is returned.

e The next step is to perform the selection of the best service which satisfies the
service requester’s preference. For this purpose, the preference on price is defined
as part of the goal’s nonfunctional properties definition which is used for ranking
of candidate services in the list of discovered services. In our implementation,
the list is sorted by the reference property. The selection selects the first service
from the list; in our case, it is the Mueller service.
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e The final step of this stage is to set up the conversation between the service re-
quester and the selected service. For this purpose, loading of both the requester’s
(goal) and the provider’s (selected service) choreography in the orchestration ser-
vice is performed (these choreographies are part of the goal and service descrip-
tions). Both choreographies are then set to a state where they wait for incoming
messages that could fire a transition rule. This completes the conversation set-up.

e In the next step, Blue can send the data according to Blue’s goal choreography
definitions. However, since our implementation is a bit simplified, all data from
Blue are already in the goal description. The execution semantics extracts all
the data from the goal description and passes them to the process mediation to
decide which data to add to the requester’s or the provider’s choreographies (this
decision is based on analysis of both choreographies and concepts used by these
choreographies). The process mediation service first updates the memory of the
requester’s choreography with the information that the purchase order request
has been sent. The process mediation then evaluates how data should be added
to the memory of the provider’s choreography — data must be first mediated to
the ontology used by the provider. For this purpose, the source ontology of the
requester, the target ontology of the provider, and the instance data are passed to
the data mediation service. Data mediation is performed by execution of mapping
rules between both ontologies (these mapping rules are stored within middleware
repositories and were created during the business service modeling phase).

Execution — Conversation with Service Provider

Once the requester’s and the provider’s choreographies have been updated, the or-
chestration service processes each to evaluate if any transition rules could be fired.
The requester’s choreography remains in the waiting state as no rule can be evalu-
ated at this stage. For the provider’s choreography, the orchestration service finds the
rule shown in Listing 12.2 (lines 8—12). Here, the orchestration service matches the
data in the memory with the the antecedent of the rule and performs the action of
the rule’s consequent. The rule says that the message SearchCustomerRequest with
data searchString should be sent to the service provider (this data has previously
been added to the processing memory after the mediation — here, searchString cor-
responds to the customerld from the requester’s ontology). The orchestration service
then waits for the SearchCustomerResponse message to be sent as a response from
the provider. Sending the message to the service provider is initiated by the orches-
tration service passing the message to the communication service, which, according
to the grounding defined in the choreography, passes the message to the searchCus-
tomer entry point of the CRM/OMS adapter. In the adapter, lowering of the WSML
message to XML is performed using the lowering rules for the CRM/OMS ontology
and the CRM XML schema. After that, the actual service of the CRM system behind
the adapter is invoked, passing the parameter of the searchString. The CRM system
returns back to the CRM/OMS adapter a resulting customerObject captured in XML.
The XML data is lifted to the CRM/OMS ontology, passed to middleware, evaluated
by the process mediaton service, and added to the provider’s choreography memory.
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Once the memory of the provider’s choreography has been updated, the next rule
is evaluated, resulting in the sending of a createNewOrder message to the Mueller
service (OMS system). This process is analogous to one described before. As a re-
sult, the orderID sent out from the OMS system is again added to the memory of
the provider’s choreography. After the order has been created (opened) in the OMS
system, the individual items to be ordered need to be added to that order. These items
were previously sent in one message as part of order request from Blue’s RosettaNet
system (i.e., a collection of ProductLineltem) which must be now sent to the OMS
system individually. As part of the data mediation in step 2, the collection of items
from the RosettaNet order request were split into individual items whose format is
described by the provider’s ontology. At that stage, the process mediation service
also added these items into the provider’s choreography. The next rule to be evalu-
ated now is the rule of sending the addLineltem message with data of one lineltem
from the processing memory. Since there is more than one line item in the memory,
this rule will be evaluated several times until all line items from the ontology have
been sent to the OMS system. When all line items have been sent, the next rule is
to close the order in the OMS system. The closeOrder message is sent out from the
middleware to the OMS system and since no additional rules from the provider’s
choreography can be evaluated, the choreography comes to the end of conversation
state.

Execution — Conversation with Service Requester

When the order in the OMS system is closed, the OMS system replies with order-
Confirmation. After lifting and parsing of the message, the process mediation service
first calls for the mediation of the data to the requester’s ontology and then adds the
data to the memory of the requester’s choreography. The next rule of the requester’s
choreography can then be evaluated and says that the purchaseOrderConfirmation
message needs to be sent to the RosettaNet system. After the message has been sent,
no additional rules can be evaluated from the requester’s choreography; thus, the
choreography comes to the end of conversation state. Since both the requester’s and
the provider’s choreographies are in the state of end of conversation, the orchestra-
tion service closes the conversation.

12.2 Case Scenario: Voice and Data Integration

Convergence of data and telecommunication networks leading to one, transparent
technology promises better services, better quality, and better deals for everybody,
anywhere, and anytime. Liberalization of the telecommunications market brings
freedom to users, who can choose different operators for different services, ena-
bles portability of services with respect to users’ needs, and enables better price and
quality ratios. Convergence of networks will also bring services allowing the com-
bination of data, voice, and video. A simple example is the integration of voice or
video services such as “make a call” with data services such as “look up a phone
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number” or “compare prices of operators.” Convergence of networks combined with
the impact of liberalization will open up new opportunities for service providers.
While they differ in quality, price, and offers of added value, hundreds of services
available for users will be hard to use without a means of automatic service discov-
ery, selection, and composition. A user as a subscriber of two or more operators and
manually comparing their services and prices to make a call for the best possible
value is likely to appear more often in the future. In order to meet users’ needs and
preferences in this dynamically changing environment, integration of voice and data
services should be automated and transparent to users. Although practical integra-
tion of voice and data services still requires a big amount of human effort, several
approaches to automate such integration already exist. These approaches are, how-
ever, based on the rigid configuration of systems and hard-wired integration. An
example is a click-to-dial application allowing a caller to make a call using a callee
name. In this scenario, a callee number is first selected from a preconfigured phone
directory and the call is established using a predefined operator. Operators used for
making a call that appear at run time can also be selected from a set of predefined,
preagreed ones. Therefore, a caller will have a limited number of choices to use the
best operator, to make a reliable or the cheapest call. In addition, if the operator’s
network fails and no alternate operator was defined when designing the application,
the phone call will fail. Instead of having a rigid configuration, dynamic and recon-
figurable integration is a step beyond traditional approaches. It introduces dynamics
by automatically locating the best service providers for a given user request.

The SESA can significantly improve the integration of telecommunication set-
vices with services available outside the telecommunication network. In this case
scenario we illustrate how the Voice over IP (VoIP) technology can be integrated
with the SESA middleware and enable their secamless and flexible integration.

12.2.1 Voice over IP

In this section we briefly describe the VoIP and related technology we use in our
scenario. VoIP, also known as Internet telephony or IP telephony (IPtel), refers in
general to the real-time transport of voice or multimedia data between two or more
parties over an IP network [191]. It presents an alternative solution to existing Public
switched telephone network (PSTN) voice services enhanced with multimedia trans-
port. VoIP by its nature enables new opportunities for integration of voice and data
services native in IP networks. Since the IP network was originally designed for
non-real-time services (e.g., e-mail, file transfer), supplementary technologies had to
be developed to ensure quality of services (e.g., acceptable delays) with respect to
real-time communication as well as signaling functionality. Signaling is the basis for
service creation in telecommunications. It refers to the exchange of control messages
in order to create, manage, and terminate communication among participants. In fact,
a simple “make a call” service is initiated with an extensive exchange of signaling
messages such as ensuring the location of the called party, his/her availability, as well
as compatible media-type negotiation. Only after that, transport of voice data for the
actual communication can start. Two standard signaling protocols have emerged to
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fulfill these needs in IP networks: H.323 [3] and Session Initiation Protocol (SIP)
[109]. In our scenario, we will make use of the latter one.

Session Initiation Protocol

SIP is an application layer control (signaling) protocol for creating, modifying, and
terminating sessions with one or more participants. Participants can be humans or
machines (e.g., a voicemail server). They are identified by SIP URL addresses in
the form of sip:user@domain or sip:user@IPaddress. SIP is a client—server proto-
col built mainly on the HTTP and SMTP principles. Its architecture includes end
system applications, such as softphones or SIP phones and network servers, such
as registrar, redirect, and proxy servers. They all facilitate VoIP communication in
terms of looking up and keeping updates on the location of users, and redirecting or
forwarding signaling requests to next-hop servers or a called party.

Asterisk

Different VoIP standards have been adopted in the telecommunications domain. Such
standards include signaling protocols, different media types, or media codecs. Al-
though they differ in quality or usability, they must often coexist together also with
legacy telecommunication systems, such as PSTN. In other words, it should be pos-
sible to integrate existing VoIP technology and standards as well as legacy systems
in one environment. One of the solutions addressing these requirements is called As-
terisk.® Asterisk is a software private branch exchange (PBX) being developed under
an open-source license. Although it primarily serves functionalities of PBX, it also
acts as a SIP proxy server as well as middleware, connecting various telephony tech-
nologies including legacy (e.g., PSTN) as well as VoIP interfaces (e.g., SIP, H.323).
On top of its fundamental functionality, Asterisk provides a set of APIs for devel-
opment of new applications allowing programmers to interface with Asterisk at any
stage of call set-up and teardown. Although Asterisk is not considered to be a fully
fledged SIP proxy server,* it provides all SIP functionality required by our scenario.
In addition, Asterisk with its open architecture and development interface allows us
to accomplish the seamless integration with the SESA middleware.

12.2.2 Case Scenario Description

In our use case depicted in Fig. 12.3, Jana (using her standard SIP phone) intends to
make the cheapest call with Tomas, of whom she only knows he works at STI. She
neither knows Tomas’s phone number, nor the available telecommunication opera-
tors, their services, and their prices. Instead, she is registered and connected with the
VoIP hub provided by a third-party operator (Jana is a VoIP subscriber). The VoIP

3 http://www.asterisk.org/
“ Alternatively, other SIP proxy servers could be used for our use case, such as SIP Express
Router (SER), http://www.voip-info.org/tiki-index.php?page=SIP+Express+Router.
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Figure 12.3. Voice and data integration use case

hub is an intermediary between Jana as a service requester, all service providers,
as well as Tomas’s phone. The VoIP hub comprises Asterisk and WSMX systems.
Among all Web Services registered with WSMX, two types of Web Services exist.
The first is a telecommunication operator Web service authorize-call registered by
operators 1 and 2, and the second is a phone directory Web service resolve-name
registered by DERI. We further describe these services later in this section.

In order to accomplish Jana’s desire, the following steps are performed. Given
Jana’s request (“make a call with Tomas, who works at STI”) including her prefer-
ences (“cheapest™), Web Services fulfilling this request are discovered, composed,
selected, and invoked, i.e., a Web service to resolve Tomas’s number, and an autho-
rization Web service of an operator through which the call will be made. As a result,
Jana’s call to Tomas is authorized and established for the best possible price. In this
chapter we further demonstrate this process in detail.

Authorize-Call Web Service

The purpose of the authorize-call Web service is to “open” an operator’s gateway
to which Jana’s call will be redirected from the VoIP hub. We presume operators
provide access to their network over the Internet using a SIP-compliant gateways;
however, only authorized calls are allowed. For example, if Jana is not registered
with operator 1 (in other words, if Jana is not a subscriber of operator 1) she cannot
make direct calls to/over the network of operator 1 but only through another operator
with which she is registered, i.e., the VoIP hub provider. At the same time, agreement
and “peering” between the VoIP hub and operator 1 must exist so that calls can be
made between both as well as billing. In our use case, such “peering” is built on
the Internet and SIP signaling. Furthermore, prices for calling from one network to
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another can differ significantly. In general, a customer calling through the network
of operator 1 to the network of operator 2 can get better price deals than a customer
of operator 2 can when calling to the same network. A good example is Skype.
Although it is based on proprietary solutions, Skype offers better deals for many
networks than many operators do for their own local calls. Apart from a number of
operators registered with WSMX, operator 1 as well as operator 2 have an authorize-
call Web service registered with WSMX.

Resolve-Name Web Service

The purpose of the resolve-name Web service is to resolve people’s or company’s
names to phone numbers. Typically, such a service could be provided by global and
local phone directories, such as Yellow Pages, or by telecommunication operators to
look up numbers of their subscribers. Apart from a number of such Web Services
registered with WSMX, the resolve-name Web service is registered by STI to look
up numbers of its staff members.

12.2.3 Voice and Data Integration Process

In this section we describe in detail the integration process of voice and data ser-
vices according to the use case scenario described in Section 12.2.2. According to
the sequence diagram depicted in Fig. 12.4, this process can be divided into the fol-
lowing phases: (1) dialing, (2) transforming desire to goal, (3) achieving goal, and
(4) achieving desire.

Dialing

Jana is registered and connected over the Internet to Asterisk of the VoIP hub running
at the address voip-hub.ie using her favorite SIP phone and her credentials (Jana is the
VoIP hub subscriber). This connection is defined in the SIP phone configuration file.
Using her phone, she now wants to express and send her desire “make the cheapest
call to Tomas, who works at DERI.” To do that, the desire must first be formalized
and second it must be sent to Asterisk using SIP. There are several ways for how this
can be done.

One option to formalize the desire is to use some ad hoc grammar, for example
(grammar is written as the regular expression):

[a=zA-Z0-9]+#[a-2zA-Z0-9] +# [price|quality] {0,1},

where terms are divided by the # character. With use of this grammar, the desire
would be described as a string tomas#deri#price. The grammar and the mean-
ing of each term must be known to users and at the same time the rules/program
processing this string must implement them (see the next phase). The meaning of
each term is as follows: (1) a callee name, (2) the name of the company that the callee
works for, and (3) an optional user preference (price means that price for the call is
preferred to the quality of the call, and vice versa). Although this approach does
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Figure 12.4. Voice and data Integration sequence diagram

not correspond with the trends of ontology engineering, it is relatively easy to use
with existing SIP phones (assuming the SIP phone allows alphanumeric characters
to be entered when dialing). Formalized desire is then used as a user part of the SIP
address. For example, if Jana “dials” tomas#deri#price, the SIP phone will
generate the following SIP message (note that only the first line of the message is
shown):

INVITE sip:tomas#derif#price@voip-hub.ie SIP/2.0

Asterisk sends back “100 Trying” response, indicating that the INVITE has been
received and is now being processed. Various extensions to SIP have already been
proposed to standardize similar mechanisms, such as Control of Service Context
Using SIP Request URI [39] or SIP Caller Preferences, and Callee Capabilities [190].
However, they were not aimed at the communication of a desire.

Another option to formalize the desire would be to use some standard or ad hoc
ontology with a standard ontology language. Preferably, this could be done using the
WSMO goal concept and WSML. However, to send such ontology through existing
SIP phones would be more difficult without changing its functionality or user inter-
face. Unlike in the first option, this ontology would not be suitable to send as the user
part of the SIP address (owing to its size or possible character sets used) but rather
should be sent in the SIP message body in a MIME-compliant format.
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We aim for the integration of voice and data services to have minimal impact
on end-user devices as well as for it to be transparent to users as much as possible.
Thus, we will use the first option described; however, we admit that this approach is
limited and should be improved in practical scenarios.

Transforming Desire to Goal

After the SIP message and the desire have been sent, they are received by Asterisk
and processed within its dial plan. In the dial plan, an application called SIP2SWS
is executed.

The SIP2SWS application is the key application in the SIP and Semantic Web
Service integration process building a bridge between Asterisk and the WSMX. On
one hand, it interfaces our SIP session using Application Gateway Interface (AGI)’
and, on the other, it transforms the desire to the WSML goal, triggers the Semantic
Web Service process by sending the WSML goal to the WSMX entry point, and
receives an output from it.

The following is the dial plan entry corresponding to our desire and its formal
representation:

exten => _.#.#., AGI (sip2sws, \S{EXTEN})

The element _. #.#. defines a dial plan pattern for the user part of the SIP
address (here, the pattern corresponds to the regular expression defined in the
previous phase), and the element AGI (sip2sws, \${EXTEN}) defines the
AGI command to execute the SIP2SWS application on the channel. The argument
\${EXTEN} is a placeholder for the current extension (user part, in our case
formalized desire) sent by the client.

The SIP2SWS application is an external application written in Java which trans-
forms Jana’s desire “make the cheapest call to Tomas, who works at STI” formalized
as tomas#deri#price to the goal “authorize the cheapest call between a caller
Jana and a person Tomas, who works at STI.” We formally describe this goal as well
as its ontology further in this section. The reason why Jana’s desire differs from the
goal is that Asterisk redirects a channel already created by Jana to a SIP proxy to
further establish the call, whereas WSMX finds the cheapest operator for the call,
authorizes this call with this operator, and returns necessary information for redirect-
ing the call (Tomas’s number and the operator’s SIP proxy domain name). If the goal
sent to the WSMX was “make a call” instead of “authorize a call,” there would be a
problem with our approach to put the SIP context of the existing channel through the
WSMX to another SIP proxy (in this case, the Parlay X Web Services interface [40]
for telecommunications systems could be used; however, we have not investigated
such an approach in our work). In our use case, we rather combine the existing SIP
proxy functionality of Asterisk used for the call redirection with the WSMX func-
tionality used for the optimal provisioning of Web Services. In other words, Asterisk
and WSMX share tasks within the VoIP hub to achieve Jana’s desire.

® AGI allows Asterisk to launch an external program written in any language to control a
telephony channel, play audio, read DTMF digits, etc.



12.2 Case Scenario: Voice and Data Integration 277

achieveGoal interface

goal o
isk | = | . [e=essssssees EQ
Asterisk = Eg
9 | sIP2sws 2€ | WsMX
(SIP Proxy) < ‘--r-e.fl-llf fjft.a.__ % E S

endpoint interface

Figure 12.5. SIP2SWS and WSMX interaction

In our use case, we use a simple request—response scenario operating in the asyn-
chronous mode as depicted in Fig. 12.5. First, the SIP2SWS application calls the
following WSMX system entry point defined as part of the WSMX integration API:

Context achieveGoal (WSMLDocument wsmlDocument)

The attribute wsmlDocument contains data sent to the WSMX, i.e., the WSML
goal and the WSML ontology. The SIP2SWS application receives a Context on
return to identify an already established session for subsequent calls with WSMX.
Result data are then sent back asynchronously from the WSMX by calling a
SIP2SWS end point (we assume this end point is registered with WSMX). Such
a scenario corresponds with the fact that no interactions between Jana and the Se-
mantic Web Service execution process are required. In more elaborated scenarios,
Jana would want to provide additional information for the selection phase of the
Semantic Web Service execution process by approving, for example, terms and
conditions of discovered services.

Simple VoIP ontology in WSML which describes concepts used in our scenario
is shown in Listing 12.4. First, namespaces to distinguish elements of multiple re-
sources are defined, such as for XML Schema (xsd), and Dublin Core (dc).

Listing 12.4. Voive over IP ontology

namespace {
xsd _"http://www.w3.0rg/2001/XMLSchema#”,
dc http://purl.org/dc/elements/1.1#"}

nonFunctionalProperties
dctttitle hasValue "VolP Ontology”
dc#description hasValue "Ontology of VoIP concepts”
10 endNonFunctionalProperties

1

2

3

4

5 ontology _"http://www.example.org/STI/VolPont”
6

7

8

9

12 concept CallParticipant

13 nonFunctionalProperties

14 dc#tdescription hasValue "Concept of a participant in a call”
15 endNonFunctionalProperties

16 userPart of Type xsd#string

17 domain of Type xsd#string

19 concept Person
20 nonFunctionalProperties
21 dc#description hasValue "Concept of a person”
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endNonFunctionalProperties
name of Type xsd#string
company ofType xsd#string

relation CallAuthorized(ofType CallParticipant, of Type CallParticipant)
nonFunctionalProperties

endNonFunctionalProperties

dc#description hasValue "Relation that holds between two call participants when call is
authorized.”

The VoIP ontology contains two concepts and one relation. In particular, the Call-

Participant concept defines a userPart and a domain attribute forming a SIP address
of a call participant, the Person concept defines a name of a person and a company
where the person works, and the CallAuthorized concept defines the relation which
holds when a call between two call participants is authorized.

Concepts defined in the VoIP ontology are used in the goal whose def-

inition is shown in Listing 12.5. This goal, which also includes input data
values (person.name=“Tomas”, person.company="“STI”, calleruserPart="Jana”,
caller.domain=“voip-hub.ie”) as well as uer preference (preference="price”), is
generated from the previously described desire and is sent to the WSMX by calling
the WSMX system entry point.

Listing 12.5. Goal authorize call

namespace {
voip _“http://www.example.org/DERI/VolPont”,
xsd _"http://www.w3.0rg/2001/XMLSchema#”,
dc http://purl.org/dc/elements/1.1#"}

goal “http://www.example.org/STI/SIP2SWSgoal”

nonFunctionalProperties
dctttitle hasValue "Authorize Call”
dc#description hasValue "Authorize a call between a caller and a person from a company
voip#preference hasValue "price”

endNonFunctionalProperties

capability
sharedVariables { ?caller, ?callee }

precondition
definedBy
exists { ?person, ?caller } (
?person[
name hasValue "Tomas”,
company hasValue "STI”
] memberOf voip#Person and
?caller|
userPart hasValue "Jana”,
domain hasValue "voip—hub.ie”
] memberOf voip#CallParticipant
).

postcondition
definedBy
exists { ?callee, ?calleeUserPart, ?calleeDomain } (




12.2 Case Scenario: Voice and Data Integration 279

34 ?callee]

35 userPart hasValue ?calleeUserPart,
36 domain hasValue ?calleeDomain
37 ] memberOf voip#CallParticipant

38 ).

39

40 effect

41 definedBy

42 exists { ?caller, ?callee } (

43 CallAuthorized(?caller, ?callee)

44 ).

In our use case, we use a preference keyword as a nonfunctional property for the
description of Jana’s preference (we assume this property is defined within the voip
namespace). Although WSMO defines nonfunctional properties such as financial or
quality of service, we do not use them as there were created for the description of Web
Services rather than for users’ preferences. Apart from the definition of namespaces
and other nonfunctional properties which are similar to those in the VoIP ontology,
the goal also contains a capability which is requested to result from the Semantic
Web Services execution process.

The capability description is composed of several blocks, i.e., sharedVariables,
precondition, postcondition, and effect. The sharedVariables block is used to indicate
the variables which are shared across the goal definition in all other blocks. In the
precondition block, requested inputs are specified, i.e., a person and a caller having
assigned the input values. In the postcondition block, requested outputs which must
result from the processing of the goal are defined. In our example, we request infor-
mation regarding a callee — his/her userPart and a domain to which a call should be
redirected. Similarly, the effect block defines requested output corresponding to the
state of the world, in our case authorized call between a caller and a callee.

The WSML goal as described in Listing 12.5 is sent to the WSMX according to
the scenario depicted in Fig. 12.5. In this case, there is no need for a goal interface
to be specified as all data values are sent as part of the goal definition and at the
same time the output is sent back by calling the SIP2SWS end point. Such a scenario
corresponds to the simple request—response interaction and reflects the latest WSMX
implementation. In more elaborated scenarios requiring more interactions between
a service requester and service providers during the Semantic Web Service execu-
tion process, this process will be initiated by sending an abstract goal including the
requested choreography. The requested choreography defines all the requested in-
teractions between the service requester and service providers, including definitions
of input data and their “feeding” to the Semantic Web Service execution process as
well as definitions of requested output data at different stages of communication.
Such scenarios will be investigated in our future work.

Achieving Goal

In this section we describe the WSMX behavior according to the goal received and
show the sequence of interactions between the WSMX components. The goal as
shown in Listing 12.5 captures the information that the requester wants to receive
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(requested outputs) as well as effects of the state of the world that the requester wants
to achieve (requested effects). The WSMX repository contains a number of registered
Web Services; among others resolve-name (by STI), authorize-calll (by operator 1),
and authorize-call2 (by operator 2). We simplify the semantic description of the goal
and the Web Services as follows:

1. Goal: Look up a callee.userPart for a person.name that works in a per-
son.company and allow a call from the calleruserPart@caller.domain to the
callee.userPart through the cheapest operator at a callee.domain.

Requested outputs: callee.userPart, callee.domain
Requested effect: CallAuthorized(caller, callee)
Provided inputs values: person.name=“Tomas”, person.company=“STI”,
caller.userPart="Jana”, caller.domain=“voip-hub.ie”
o Preference: price

2. Web service: resolve-name

e Requested inputs: person.name, person.company
e Provided outputs: callee.userPart

3. Web service: authorize-calll

e Requested inputs: callee.userPart, caller.userPart, caller.domain
e Provided outputs: callee.domain
e Provided effect: CallAuthorized(caller, callee)

4. Web service: authorize-call2

e Requested inputs: callee.userPart, caller.userPart, caller.domain
e Provided outputs: callee.domain
e Provided effect: CallAuthorized(caller, callee)

The following is the description of the actions of particular components within
WSMX to achieve the goal, namely, discovery and composition, contracting, se-
lection, and invocation. For discovery and composition we use the integrated ap-
proach proposed in [177]. Discovery of Web Services is called within the composi-
tion process every time a Web service needs to be discovered. In this approach, the
following components are identified:

e Integrated discovery and composition (IDC).

e Functional level composition (FLC). This is used when there is no single service
that can satisfy the goal. FL.C refines the goal into subgoals in order to find a
subset of the existing Web Services which can be combined into a composite
service fulfilling the goal.

e Process level composition (PLC). This creates a workflow for the composite ser-
vice with respect to choreography and orchestration constraints.
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1. IDC (goal)

Action: Discovery component is called to match the goal with Web service
descriptions in the WSMX repository.

Result: Discovery was not able to find a single Web service covering all
requirements of the goal.

2. FLC (goal)

Action: The goal is refined into two subgoals. This refinement is based on

predefined generic goals stored in the goals repository.

Result: Subgoal 1. Look up a callee.userPart for a person.name that works

in a person.company

— Requested outputs: callee.userPart,

— Provided inputs: person.name, person.company, caller.userPart,
caller.domain

— Provided inputs values: person.name=“Tomas”,
person.company="“STI", caller.userPart="Jana”,
caller.domain=“voip-hub.ie”

— Preference: price

Result: Subgoal 2. Allow a call from caller.userPart@ caller.domain to

callee.userPart through the cheapest callee.domain.

— Requested outputs: callee.domain,

— Requested effects: CallAuthorized(caller, callee),

— Provided inputs: person.name, person.company, caller.userPart,
caller.domain

— Provided inputs values: person.name=“Tomas”,
person.company="“STI”, caller.userPart="Jana”,
caller.domain=“voip-hub.ie”

— preference: price

3. IDC (subgoal 1)

Action: Discovery component is called to match subgoal 1 with service de-
scriptions in the WSMX repository.

Result: Discovery has found the resolve-name Web service with requested
capabilities.

Action: So far, we have only considered the outputs and the effects in the ser-
vice descriptions independently of input information that has to be provided
to the Web service. These inputs determine whether the Web service can be
actually used. Therefore, the resolve-name Web service will be checked for
available inputs. Up to now the actions were completely internal to WSMX
and they were based on abstract descriptions of goal/subgoal and Web Ser-
vices. There was no interaction with the requester or service providers. For
a complete guarantee that discovered Web Services can provide a concrete
requested service, further communication with this Web service is necessary.
Such communication is called contracting and must be called at this stage of
discovery and composition.
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Contracting (resolve-name)

e Action: Contracting for the resolve-name Web service. We need to find out
whether this Web service is able to provide name resolution for STI staff;
thus, canResolve(person.company="“STI”) is called.

e Result: Web service resolve-name can provide name resolution for DERI
Before proceeding to IDC of the next subgoal 2, available inputs for sub-
goal 2 are extended by outputs of the already discovered and contracted Web
service resolve-name, in this case callee.userPart.

IDC (subgoal 2)

e Action: The discovery component is called to match subgoal 2 with Web
service descriptions in the WSMX repository.

e Result: Discovery has found two Web Services both satisfying subgoal 2:
authorize-calll and authorize-call2.

Action: Each discovered Web service will be checked for available inputs.
Result: Both discovered Web Services need as input callee.userPart, which
is not provided by the requester. However, thanks to the previously discov-
ered resolve-name Web service which returns callee.userPart as its output,
authorize-calll and authorize-call2 can go for further processing with the
restriction that they have to be invoked after the resolve-name Web service.

Contracting

e Action: Contracting for authorize-calll and authorize-call2 to find out
whether each of these Web Services is able to provide the authorization for
a concrete callee.userPart value.

e Result: Contracting is not possible at this stage as all required input values
are not known (callee.userPart value in particular). In order to contract these
Web Services, the resolve-name Web service has to be first invoked.

PLC creates the workflow based on discovered services, resolve-name and

authorize-call.

Invocation

e Action: resolve-name is invoked, getNumber(person.name=“Tomas”,
person.company="“STI”)

e Result: The Web service returns callee.userPart="0035391495270" .
Auvailable inputs for subgoal 2 are extended by this output.

Contracting

e Action: Contracting for authorize-calll and authorize-call2 to find out
whether each of these Web Services is able to provide the authoriza-
tion for a concrete callee.userPart value: canAuthorize(callee.userPart=
“0035391495270”).

e Result: Both services can provide the authorization for the requested
callee.userPart, both services have available inputs and have been con-
tracted. As for subgoal 2 we have discovered two possibilities; therefore,
selection will be performed on the basis of the requester’s preference (price).
However, in order to do that, we must find out the price for calls offered by
both Web Services.
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e Action: Get information about price for authorize-calll and authorize-call2
for a call to callee.userPart: getPrice(callee.userPart="“0035391495270").

o Result:
— authorize-calll returns price="0.17", currency="“EUR”, time-unit=
“minute”.
— authorize-call2 returns price=“0.004", currency="“GBP”, tariff=
“second”.

10. Selection

e Action: Selection will chose between services authorize-calll and
authorize-call2 on the basis of the requester’s preference. Since different
ontologies are used by these services (e.g., different currencies, different
concepts time-unit and tariff), data mediation will be called at this stage
(note that mapping rules with conversions between both ontologies must
be available beforehand to process this data mediation— such information is
obtained during the design-time stage of the mediation process).

e Result: authorize-calll Web service was selected.

11. Invocation

e Action: authorize-calll Web service is invoked: authorize-calll
(callee.userPart="“0035391495270”, caller.userPart="“Jana”,
caller.domain=“voip-hub.ie”).

e Result: callee.domain="“operatorl.ie” as well as call authorization are ef-
fected through the gateway of operator 1.

Achieving Desire

After the goal has been accomplished by the WSMX, the SIP2SWS application re-
ceives information about Tomas’s number as well as the operator’s SIP proxy (do-
main name of the SIP proxy) at which the call between Jana and Tomas has been au-
thorized. Thus, the SIP2SWS application can now process further to achieve Jana’s
original desire. To do that, the following SIP message is forwarded from Asterisk to
the operator’s gateway (only the first line of the message is shown):

INVITE sip:0035391495270Qoperatorl.ie SIP/2.0

Asterisk receives back 100 Trying response from the operator’s gateway indi-
cating that the INVITE has been received and is now being processed. We consider
operator 1 is a VoIP operator having connection with operator 2 through some SIP/P-
STN gateway. As Tomas with number 0035391495270 as a subscriber of operator
2 (hence, operator 2 is a landline operator), the SIP signaling is transformed at the
SIP/PSTN gateway into the PSTN signaling in order to reach Tomas. Next, Tomas’s
phone starts ringing and Jana is notified by the ringing tone.

As we mentioned earlier, thanks to the liberalization and regulation of transit
and termination charges for calls, the alternative operators can compete with legacy
operators with regard to services offered and prices. This was also the case in our
example.
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12.3 Summary

In this chapter we showed the SESA and its middleware technology can be applied
to integration of business services from the B2B domain and to integration of voice
and data services from the telecommunication domain. The important aspect of such
integration is that it must essentially build on existing technologies. In the case of
B2B integration they are existing standards such as RosettaNet and related systems;
in the case of telecommunications they are existing systems and standards of VoIP.
In these scenarios we described how services can be modeled semantically using the
WSMO framework and how the whole execution process runs in the middleware.

While the semantic technologies and the SESA in particular can facilitate the
novel style of integration of services by means of semantic service descriptions and
artificial intelligence methods, some people say that such an approach is not realistic
today. They argue that the complexity of semantic languages and integration tech-
niques that depend on logical reasoning is a burden for service processing and high
performance. However, the logical reasoning can efficiently help resolve inconsisten-
cies in service descriptions as well as maintain interoperability when these descrip-
tions change. The more complex the services’ descriptions are, the more difficult
it is for a human to manually maintain the integration. The semantics that promote
the automation is the key to flexibility and reliability of such integration. To demon-
strate the value of semantics for service descriptions as well as automation in service
integration, we are working on the SWS Challenge.® The SWS Challenge aims to
establish a common understanding, evaluation scheme, and test bed to compare and
classify various approaches to integration of services in terms of their abilities as
well as shortcomings in the real-world settings. Although a world full of services
does not exist yet, one-click integration will be desirable. The SESA and its related
activities enable such a world as well as such integration.

S http://www.sws-challenge.org
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Compatible and Related Systems

This chapter will discuss in detail the nature of one Semantically Enabled Service-
oriented Arhitecture (SESA) compliant system, IRS-III, which also informs the
OASIS standardization work on semantic Service-Oriented Architecture. It will also
consider tools that have been independently produced to fulfill separate tasks within
the architecture, specifically those which address discovery and composition. Next
tools from tools from the OWL-S community will be considered from the point of
view of the SESA. Finally the METEOR-S toolset, and its input into the WSDL-S
standardization, will be considered.

13.1 The Internet Reasoning Service

The Internet Reasoning Service (IRS) project! [36] conducted in the Knowledge
Media Institute at the Open University has the overall aim of supporting the au-
tomated or semiautomated construction of semantically enhanced systems over the
Internet. The epistemological basis of the IRS is based on the decomposition of the
system’s expertise into tasks, methods, domains, and applications, usually referred
to as the TMDA framework [152]. This framework, mainly influenced by extensive
research on problem-solving methods, was implemented in IRS-I [46] to support the
creation of knowledge-intensive systems structured according to the UPML frame-
work [78]. IRS-II [153] continued this approach and integrated the UPML frame-
work with Web service technology so as to benefit from the reasoning infrastructure
over the Web. Finally, the current version of the IRS, namely, IRS-III [36], has in-
corporated and extended WSMO so that the implemented infrastructure allows the
description, publication, and execution of Semantic Web Services.

IRS-IIT is based on a distributed architecture composed of the IRS-III server,
the publishing platforms, and clients, as shown in Fig. 13.1. The server embeds an
OCML [152] interpreter which includes all the reasoning machinery for manipu-
lating definitions of ontologies and invoking Web Services in order to satisfy the

! http://kmi.open.ac.uk/projects/irs
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client’s requests expressed as goals. In order to support the invocation of Semantic
Web Services, the core reasoning machinery is complemented with the orchestration
interpreter, the choreography interpreter, the mediation handler, and the invoker.

The server provides access to client applications for creating and editing WSMO
descriptions of goals, Web Services, and mediators and it also allows achieving of
stored goals by invoking previously deployed Web Services. Clients communicate
with the server by means of a stack of Java libraries, encapsulated in the box in
Fig. 13.1. The libraries provide programmatic access to the server functionality as
well performing the appropriate transformations between WSMO definitions and
OCML as required. Furthermore, an implementation of the current version of the
Semantic Execution Environment API is also available, so that compatible applica-
tions, like WSMO Studio or the Web Service Modeling Toolkit, can make use of the
IRS in a homogeneous way.

The publishing platforms allow providers of services to attach semantic descrip-
tions to their deployed services and allow handlers to invoke services in a specific
language or platform. Currently the IRS supports four different types: WSDL, Lisp
code, Java code, and Web applications. When a Web service is published in IRS-III
the information about the publishing platform is also associated with the Web ser-
vice description in order to be invoked. The Java and WSDL publishing platforms are
delivered as Java Web applications, whereas both the Lisp and the HTTP publishers
have been developed in Lisp.

In the remainder of this section we will focus on specific aspects of the IRS:
firstly the basis for reasoning in OCML and an encoding of the WSMO model,
then discovery, selection, and mediation, next communication, and finally support
for choreography and orchestration.

13.1.1 Reasoning
OCML

The IRS has been developed entirely in Lisp and uses OCML [152] as its modeling
language. The main goal of OCML is to support knowledge-level [156] modeling.
Thus, it provides mechanisms for expressing relations, functions, rules, classes, and
instances. It is, however, worth noting that OCML is an operational language and,
therefore, as opposed to pure knowledge-level modeling languages, it aims to encom-
pass behaviour as well. In consequence, OCML is suitable for the rapid prototyping
of knowledge-level models but it does not aim to provide highly efficient execution.

OCML is intended to support the specification of problem-solving methods and
the development of complete applications by reusing existing libraries. It does so by
supporting the specification of domain models, tasks, and methods. OCML supports
different modeling styles, i.e., formal, informal, and operational. Formal modeling
is indirectly supported by the language, i.e., no formal semantics are provided for
the control language, by defining mappings to formal languages [152]. Informal
modeling is supported by means of a graphical notation and operational modeling
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is enabled by the existing interpreter for evaluating control and functional terms and
for its inferencing capabilities.

OCML provides three types of constructs: functional, control, and logical ex-
pressions. Functional terms are constants, variables, strings, a function application,
or can be defined by means of special constructors such as if, cond, or setofall to
name a few. Control constructs support defining how problem-solving should occur.
Among these constructors we can find loop, do, repeat, etc. Lastly, OCML supports
defining logical expressions using the operators and, or, not, =/, =/ and the quan-
tifiers forall and exists. The reader is referred to [152] for more details about this and
other aspects of OCML.

The modeling language provides mechanisms for defining relations, functions,
ontologies, classes, instances, procedures, and rules in order to support domain
modeling. Relations support defining n-ary relationships between OCML entities.
Functions can be characterized as relations although they cannot be queried or as-
serted. Instead, functions generate values. OCML supports defining hierarchies of
classes and the inheritance of their slots. Typical frame-based machinery is supported
for defining slots such as the type, default and fixed values, cardinality restrictions,
and the inheritance mechanism to be used. OCML supports both an object-oriented
approach to defining classes and a relation-oriented one by means of the iff-def con-
struct. Finally, procedures support defining sequences of actions that cannot be char-
acterized as functions between inputs and outputs.

In addition to the mechanisms presented so far, OCML provides the means for
defining backward and forward-chaining rules. Backward rules are defined in terms
of backward clauses that specify goal-subgoal decomposition. The OCML inter-
preter is implemented as depth-first search with chronological backtracking and tries
to prove every subgoal in the order they are listed in the rule definition. Forward-
chaining defines data-driven or goal-driven reasoning and supports defining how
problem-solving should occur. Forward rules specify antecedents and a set of con-
sequents which are treated as goals to be proven. When a forward rule is executed
OCML attempts to proven each consequent until one fails.

WSMO Metamodel in the IRS

We previously mentioned that the distinguishing characteristic of IRS-III with re-
spect to preceding versions is the incorporation of WSMO so as to support the
description, publication, and execution of Semantic Web Services. IRS-III has its
own internal representation of the WSMO metamodel in OCML and introduces some
specific modifications and extensions, which we review next.

A first aspect that differs from WSMO is the fact that in IRS-III, goals and Web
Services have an explicit declaration of input and output roles which includes the
name and the semantic type. This approach contrasts with WSMO, where this infor-
mation is defined in the state signature as part of the choreography specification.

A second notable feature, closely related to the previous one, comes from the fact
that Web Services can inherit the goal’s inputs and output roles. As a consequence,
the declarations of roles in Web Services are not mandatory although they can be
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used to either extend or refine existing definitions of roles. This feature is in fact
enabled by the fact that inputs and output roles are defined as part of goals and Web
Services, as opposed to the approach prescribed in WSMO, and supports further
reuse of existing definitions.

In addition to the specific extensions to WSMO included in IRS-IIL, further dis-
tinguishing characteristics arise from the underlying modeling support used in the
IRS. WSMO is defined using the Meta-Object Facility (MOF) [160], which specifies
a metadata architecture based on fours layers:

1. The information layer, which comprises the data described.

2. The model layer, where the data in the information layer is described.

3. The metamodel layer, which defines the structure and semantics of the metadata
expressed in the model layer.

4. The meta-metamodel layer, where the structure and semantics of the meta-
metadata are defined.

In WSML this metamodel is separate from the definitions made in the language, i.¢.,
it is a separate metathcory. Hence, the language defining WSMO (MOF) corresponds
to the meta-metamodel layer; WSMO itself represents the metamodel layer; the on-
tologies, Web Services, goals, and mediators defined in WSML constitute the model
layer; and the actual data described by the ontologies and exchanged between Web
Services belong to the information layer.

Domain- or application-specific definitions span the information and model lay-
ers where Web service, ontology, goal, and mediator are basically language con-
structs. Consequently, when modeling any specific domain in WSML, there is no
possibility to treat Web service, ontology, goal, or mediator as concepts which could
be subsumed or instantiated. This supports the execution of Web Services, since ex-
isting WSML-based software has embedded knowledge in order to deal with these
concepts; however, this separation of layers has important drawbacks associated
with it.

A first inconvenience is, as pointed out in [203], the fact that it is important to
distinguish between prototypical goals which represent the specific static definitions
and the actual instantiations of these goals which contain invocation data. The au-
thors refer to these as goal templates and goal instances, respectively, and in fact the
introduction of goal templates proposed in [203] is a way to overcome part of the
limitations introduced by the MOF-based definition of WSMO.

Secondly, at the model level, goal being merely a construct, one cannot benefit
from subsumption. Supporting the creation of goal hierarchies would promote and
support reusing definitions. Goal achievement could be enhanced by supporting the
dynamic selection of refined goals taking nonfunctional properties into account, for
example. Similarly, facing situations where a specific goal cannot be achieved, sys-
tems could decide to meet part of the client requirements by achieving a more generic
goal. So far, this is supported in WSMO by means of ggMediators but using these
requires additional ad hoc reasoning facilities where preexisting reasoning machin-
ery could be applied (e.g., subsumption). In fact ggMediators do not specify whether
the relationship between goals is one of equivalence or refinement.
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In IRS-III, these inconveniences are overcome in OCML by defining both the
metamodel (WSMO) and the user models in the same language, i.e., both the WSMO
metaconcept of goal and specific user goals — the previously mentioned goal tem-
plates — are both OCML classes. Being so supports the instantiation of goals and
allows the defining of relationships (e.g., is-a relations) between goals.

Despite the differences described so far, the current implementation of the IRS
includes a set of libraries that ensures that preexisting WSML definitions based on
the official specification can be imported into IRS-III. The same way the libraries
support exporting into WSML existing definitions expressed in the OCML repre-
sentation of the WSMO metamodel. In the latter case, however, there is obviously
some expressivity degradation, specifically because mixing levels is not supported in
WSML.

13.1.2 Discovery, Selection, and Mediation

Discovery in the IRS is based on the existing ontological connection between goals
and services expressed via wgMediators. This can be dynamically computed when
a new goal is submitted, but the assumption is that the IRS enacts a stable bro-
ker between preexisting goals and external deployed Web Services. Having found
a mediator connecting a goal to some candidate services, the IRS selects the most
suitable on the basis of the preconditions and assumptions defined in their capability.

In order to support this model of discovery and selection, IRS has some exten-
sions and differences in the interpretation of the WSMO model from that applied by
WSMX. Firstly, goals are implicitly assumed to be atomic and explicitly parame-
terized in inputs, which are therefore all required before execution. For this reason
there is no need for a behavioral part to a goal’s choreography in the IRS. Secondly,
a WSMO Web service is viewed as the application of an external deployed service
to a particular atomic task. While this requires only the communication of inputs
from the user, and return of an output, IRS as a broker may be required to carry
out several interactions with the deployed service to reach this output. The proto-
type of this interaction is stored in the choreography of the service and is called a
client choreography. This is different from the model of goal choreographies and
service choreographies, which need dynamic process mediation in WSMX. Process
mediation may be used to form client choreographies when service descriptions are
added to the IRS to make deployed services available for new tasks but, like dynamic
discovery, this is outside the scope of the current tool.

Data mediation in the IRS is encoded in the wgMediator, which links a goal and
Web service and may take one of three forms, each allowing the inputs of the goal
to be turned into the inputs required by the Web service, and the outputs provided
by the Web service to be turned into the output expected by the goal. Firstly, the
IRS model of the ooMediator is extended to allow OCML rules mapping between
instances of concepts within the ontologies specified. In this way wgMediators can
be linked to ooMediators, including a declarative specification of the data mediation.
This is similar to the approach of the abstract mapping language engine described
for WSMX, but explicitly attached to the mediator description. The other means to
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provide data mediation in the IRS are via the service abstraction and the “usesMe-
diationService” attribute of WSMO’s wgMediator. This can be used either to attach
a service which can convert between goal and service inputs, or service and goal
outputs, as described above, or to attach a goal which describes the requirements on
such a mediation service. In the latter case, discovery and selection can be applied
recursively so that the link between a goal and a candidate service may depend on
the existence of such a mediation service.

The capability-driven selection mechanism provided by IRS-III has recently been
extended to encompass trust-based requirements and guarantees [80]. A Web Ser-
vices Trust Ontology (WSTO) has been built with which WSMO-based descriptions
can be extended and a classification-based algorithm is used to discount and rank
candidate services according to the “trustworthiness” of their guarantees on certain
nonfunctional aspects, such as quality-of-service.

13.1.3 Communication

We previously depicted the IRS architecture as being distributed and composed of
three main blocks: the server, the stack of libraries, and the publishing platform.
Interactions between components belonging to the same block take place in the same
execution environment and are based on direct invocation.? As a consequence, sup-
porting this does not require any specific communication infrastructure or machinery.
Describing the communication mechanisms implemented in the IRS therefore con-
cerns three interactions.

The first one corresponds to the communications between clients and the IRS as
supported by the libraries stack. The stack of libraries provides access to the main
IRS functionality like the manipulation of knowledge models or the invocation of
goals. The communication between the Java libraries and the IRS is centralized in
the IRS-IIT API, which provides the unique access point to the IRS server as a set
of methods that manipulate OCML definitions (Fig. 13.1). Additionally it embeds
a server which enables run-time monitoring of the IRS server, in order to track the
internal processes taking place in the server. Communication between the IRS-III
API and the server, both inbound and outbound, is based on SOAP. Each client re-
quest/reply interaction is supported by SOAP and a set of fixed XML message for-
mats. Similarly, every activity tracked in the IRS generates events expressed in terms
of an events ontology which are subsequently serialized and sent to the monitoring
server using SOAP.

The second communication affects the interaction between the IRS server and the
publishing platforms. The IRS can currently invoke four different types of remote
services: Lisp code, Java code, WSDL Web Services, and Web applications via
GET requests. The first three types are handled by the appropriate component of
the publishing platform, whereas the Web applications are directly invoked by the
IRS server for it has built-in HTTP support. The remaining publishing platforms,

2 Note that there is no interaction between publishers.
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i.e., Java, WSDL, and Lisp publishing platforms, are external components which
communicate with the server via SOAP.

An important aspect of this communication concerns the transition between the
semantic world and the syntactic world, usually referred to as lifting and lowering in
the Semantic Web Service community. In the IRS this functionality is provided by
the invoker. The current implementation of the IRS includes lifting and lowering ma-
chinery for dealing with XML-based results. The relevant information for performing
the appropriate transformations is stored as a set of Lisp macros which identify the
data interchanged, the relevant Semantic Web Service and the corresponding XML
element by means of an XPath expression. At run time the invoker retrieves infor-
mation on how to lift or lower the data and applies it right after receiving the results
or right before sending the invocation data, respectively. This way, the data sent to
the publisher is always in its syntactic representation, whereas internally the IRS
manipulates semantic data.

The final communication takes place between the different publishing platforms
and the actual Semantic Web Service being invoked and it is therefore platform-
specific. For instance, Lisp code is executed in the Lisp publishing platform; WSDL
services are invoked using the protocol specified; Web applications are invoked
through HTTP; and Java services are provided by a Java-based Web application
deployed on a Tomcat Web server so as to be invocable.

13.1.4 Choreography and Orchestration

As discussed in Sect. 13.1.2, choreography in the IRS model consists of the attach-
ment of client choreographies to Web Services. The choreography engine is applied
to execute a client choreography when a Web service is selected in order to meet
a goal. Whereas the separation of client and service choreographies, together with
dynamic mediation between them, in WSMX allows the parties and communication
roles in these choreographies to be implicit, a client choreography implicitly includes
communications via the broker and a more sophisticated model of communication is
required. The choreography model of IRS is detailed in [61].

The IRS offers two models for orchestrations attached to Web service descrip-
tions. In both cases these models are executable and derive the required atomic be-
havior from a complex interaction between some number of other artifacts.

In the simple case, described in [36], control flow primitives are used to link
together goals to form a complex behavior. ggMediators are used to form the data
flow between these goals; when a ggMediator connects one goal to another, the input
will be taken from the source goal and communicated to whichever input of the
target goal matches the ggMediator’s output. This may involve data mediation as
described for wgMediators above. One consequence of this model is that a given
goal may only be instantiated once per orchestration or the data flow is ambiguous.
It is also not permitted to directly specify another Web service to be applied during
the orchestration.

Both of the stated deficiencies of the simple orchestration model are addressed
in the Cashew orchestration model [158]. Here both goals and Web Services can be
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specified in prototypical performances, which are the units of behavior composed in
a hierarchical control flow decomposition. Data flow is unambiguously specified by
a new type of mediator between performances, named a ppMediator. As described
for wgMediators and ggMediators, the usual attributes may be used to specify data
mediation. The second advantage of the Cashew model is the ability to represent this
model in UML activity diagrams, and work has been carried out on composition in
this model with execution via the Cashew orchestration implementation [158].

13.2 Other WSMO-Compatible Tools

In this section we present other tools that fit into the SESA but exist and are devel-
oped separately from WSMX and the IRS.

13.2.1 Discovery

Glue is a WSMO-compliant discovery engine produced by Cefriel [59]. Like the
IRS it uses wgMediators to capture a connection between goals and Web Services
and relies on a non-WSML model wherein both goal templates and goal instances
may be described. Furthermore, metaclasses are used to form “classes of goals” to
relate goals and aid in discovery. Glue uses Flora-2 [218] to provide reasoning over
this model.

Another aspect to discovery that has been implemented separately from, but
in a compatible manner with, WSMX concerns quality of service (QoS). A QoS-
aware discovery component has been developed at Ecole Polytechnique Fédérale de
Lausanne which codifies a description of nonfunctional service requirements and
characteristics, respectively, in the “nonfunctional properties™ attributes of WSMO
goals and Web Services. The KAON reasoning engine [151] is used to reason over
these descriptions and find those Web Services that meet the requirements expressed
in the goal.

13.2.2 Composition
ILog Composer

A workflow composition tool for UML activity diagram based workflow models
has been developed by ILog, based on their configurator tool, in cooperation with
Ecole Supérieure d’Ingénieurs de Luminy [8]. During the DIP project® this com-
poser tool was adapted and applied to WSMO-based models. A three-level frame-
work was defined for choreography and orchestration wherein models in the Cashew
workflow language could be translated into activity diagrams for composition and
then back to Cashew or into abstract state machines for execution in IRS or WSMX,
respectively [158]. Practically this means that from an abstract composition of goals

3http://dip.semanticweb.org
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a new Web service description that contains an orchestration over Web Services that
meet those goals can be automatically derived by configuration, and based on the
choreographies of the candidate Web Services.

13.3 Tools Based on OWL-S

OWL-S,* formerly DAML-S, is an ontology for the description of Semantic Web
Services now expressed in the Web Ontology Language (OWL),> which predates
WSMO. A service description is divided into three parts:

1. The service profile describes “what the service does” in terms of inputs, outputs,
preconditions, and effects (IOPEs).

2. The service grounding describes how the service can be accessed, usually by
grounding to WSDL.

3. The service model describes “how a service works” in terms of a process model
that may describe a complex behaviour over underlying services.

A comparison of the description of services using OWL-S and WSMO was un-
dertaken in [131] and it is not the intention here to reproduce this work, but only to
consider tool support. Rather than define and populate an architecture for complete
tool support of Semantic Web Services using OWL-S, as has been the aim of SESA
and WSMX, respectively, the community has produced a number of tools that play
different roles. Consequently this section will use to SESA as the basis to survey and
compare OWL-S tools.

13.3.1 Reasoning

OWL-S is an OWL ontology like any other and therefore reasoning support is pro-
vided primarily by OWL reasoners. OWL itself is divided into three sublanguages of
increasing expressivity: OWL Lite, OWL DL, and OWL Full. OWL Full has no de-
cidable reasoning and OWL Lite provides supports for only simple constraints over
classification hierarchies; therefore, reasoner implementation concentrates on OWL
DL, which is based in description logics. Pellet [196] and FaCT/FaCT++ [208] are
two such OWL DL reasoners based on tableaux algorithms. Since, however, OWL
DL is not sufficiently expressive in most cases to define all parts of the user models,
for instance, defining conditions within the process model, rule-oriented extensions,
or an embedding of another rule language such as SWRL,’ are used for this pur-
pose [167]. Consequently reasoners capable of dealing with OWL DL and rules,
such as Racer [94] and Kaon2 [151], are often applied. An advantage of the OWL-S
model over the expression of WSMO in WSML is that, like WSMO’s expression in
OCML, the same reasoner can be used to carry out metareasoning about the model
and therefore the metamodel itself can be used in user models.

* http://www.daml.org/services/owl-s
® http://www.w3.0rg/TR/owl-features
6 http://www.w3.org/Submission/SWRL
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13.3.2 Discovery

The process underlying discovery in OWL-S is usually referred to as match-making
and heavily relies on the explicit specification of inputs and outputs. The ontologi-
cal relationships between the inputs and outputs (I/Os) of a “template” — which in
this sense plays the role of a WSMO goal, but is not explicitly conceptualized as
such — and a candidate service are compared. A set of five “filters” classify the struc-
tural relationships that are accepted between the template and candidate 1/Os. Klush
et al. [125] detailed such a matchmaker, OWLS-MX, that implements such an algo-
rithm and combines it with syntactic match to cover those occassions when semantic
matchmaking fails, for instance, when two ontologies are disjoint since there is no
means for mediation to map these. The survey in this paper also affirms that there
are no implementations that both offer this I/O-based approach and also consider the
preconditions and effects, completing the so-called IOPE-based matchmaking that
was envisioned for OWL-S. We also note that there exists no discovery approach for
OWL-S that also covers the behaviour of a service, since they are simply considered
to be atomic in the model.

It is worth noting one further discovery engine for OWL-S which provides an
advantage not considered in the SESA. Srinivasan et al. [201] considered the addition
of the OWL-S model to Universal Description, Discovery, and Integration (UDDI)
descriptions and the extension of an open-source UDDI engine, jUDDI, to support
semantic matchmaking based on these descriptions.

13.3.3 Choreography and Orchestration

The OWL-S model fundamentally assumes that “services” are invoked as atomic
actions and therefore no model of choreography is contained. On the other hand,
the process model allows services to be attached either to an atomic process, which
is usually grounded to a WSDL operation, or to a composite process. The process
model allows for a hierarchical control-flow oriented decomposition of composite
processes, ultimately producing some ordering over atomic processes. When such a
service is to be executed, the OWL-S virtual machine [167], formerly the DAML-S
virtual machine, executes the atomic processes up to completion of the composite
process description, returning the outputs just as if the invocation had been atomi-
cally carried out. In evaluating a composite process model, the virtual machine needs
access to OWL DL and SWRL reasoning and this is provided by Racer [94]. In SESA
terms, then, the OWL-S virtual machine fulfills the basic role of an orchestration en-
gine, but OWL-S has no support from a choreography engine.

13.3.4 Mediation

The OWL-S model, in contrast to WSMO, provides no first-class support for medi-
ators. Data mediation services can, of course, be described using the provision for
other services. There are two notable approaches considering data mediation expli-
citly in OWL-S: Paolucci et al. [169] considered exactly this embedding of WSMO’s
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mediator model into OWL-S, whereas work related to that of Szomszor et al. [206]
considers mediation services as “shims,” which mix, rather than isolate, the syn-
tactic and semantic representations of data in order to efficiently apply mediation
at the syntactic level. Since, as stated above, the OWL-S model treats services as
invoked atomically and without choreographies, there is no notion of automated
process mediation in OWL-S. If the interaction between two services requires
process mediation this must be carried out as part of a composite process, though
the process model has deficiencies even in this regard owing to its notion of atomic
service interaction [157].

13.3.5 Composition

A great deal of work in automated service composition has been carried out in
OWL-S, not least since its abstraction of service interactions to atomic ones and
its simple model of composite processes are a good fit to existing techniques. Much
work has been carried out using artificial intelligence planning-based techniques,
for instance, resulting from [217]. A recent tool which considers the need to apply
replanning during the execution of a composite service is described in [126].

13.4 METEOR-S

The METEOR-S project’ carried out at the LSDIS Laboratory at the University
of Georgia, aims to define semantics for the complete life cycle of Semantic Web
processes, encompassing the annotation, discovery, composition, and enactment of
Web Services. The foremost distinguishing characteristic of the research undertaken
in the METEOR-S project is the strong coupling with existing Web Services stan-
dards [198]. In fact, the philosophy of METEOR-S is to incrementally extend pre-
existing standards with semantics so as to better support the discovery, composi-
tion, and enactment of Web Services. This contrasts with the rest of the approaches
presented in this book, which are based on the creation of brand-new languages or
formalisms mostly decoupled from existing standards.

So far the METEOR-S project has focussed on the semantic annotation of Web
Services, on the semantics-based discovery of Web Services, and on their composi-
tion, which also encompasses data mediation. In the remainder of this section we
will focus on the specific approaches adopted in METEOR-S for each of these
research topics. First, we will present, the METEOR-S Web Service Annotation
Framework (MWSAF) [175] paying special attention to the language it builds upon,
namely, Web Service Semantics (WSDL-S) [198] and its successor Semantic Anno-
tations for WSDL and XML Schema (SAWSDL) [70]. Second, we will focus on the
METEOR-S Web Service Discovery Infrastructure (MWSDI) [212]. Next, we will
describe the METEOR-S approach to data mediation [155] and finally we will focus
on the METEOR-S Web Service Composition Framework (MWSCF) [197].

" http://1sdis.cs.uga.edu/projects/meteor-s/
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13.4.1 Semantic Annotation

The METEOR-S project comprises the so-called MWSAF [175], a framework for
the semiautomatic annotation of Web Services. These annotations address four dif-
ferent aspects of Web Services’s semantics. First of all, MWSAF supports including
annotations about the semantics of the inputs and the outputs of Web Services. Sec-
ondly, the annotation framework supports the definition of functional semantics, i.¢.,
what the service does. Thirdly, MWSAF allows the inclusion of execution semantics
to support verification of the correctness of the execution of Web Services. Finally,
the framework supports inclusion of information regarding the quality of service,
such as performance or costs associated to the execution of Web Services.

Initial research on the framework was devoted to supporting the semiautomatic
annotation of the XML Schema part of Web Services definitions. This work is based
on the transformation of both XML Schema and ontologies into a common represen-
tation format called SchemaGraph [175] in order to facilitate the matching between
both models. Once the ontologies and XML Schema have been translated into this
common representation, a set of matching algorithms can be applied to (semi) auto-
matically enhance the syntactic definitions with semantic annotations.

In a nutshell, the matching algorithm computes a “match score” between each el-
ement of the WSDL SchemaGraph and the ontology SchemaGraph. This score takes
into account the linguistic and the structural similarity. After all the match scores
have been computed, the “best” matching element is chosen by taking into account
both the match score and the specificity of the concepts. Finally, a global match-
ing average is computed to help in selecting the best overall match between Web
Services and ontologies. Further details about the algorithm can be found in [175].

The MWSAF is composed of three main components: an ontology store, the
matcher library, and a translator library. The first component stores the ontologies
that will be used for annotating the Web Services. The matcher library provides
different algorithm implementations for linguistic and structural matching between
concepts and elements of Web Services . Finally the translator library consists of the
programs used for generating the SchemaGraph representation for ontologies and
Web Services.

The MWSAF assists users in annotating Web Services by browsing and comput-
ing the concordance between domain models and elements of Web Services . The
last step in the annotation process is their representation for future reuse for auto-
mated processing. To cater for this the METEOR-S project makes use of WSDL-S,
which we present in more detail in the following section.

WSDL-S and SAWSDL

WSDL-S was proposed as a member submission to the W3C in November 2005
between the LSDIS Laboratory and IBM [5]. In line with the philosophy of the
METEOR-S project, WSDL-S is a lightweight approach to associating semantic
annotations with Web Services which builds upon preexisting standards. Using
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the extensibility of WSDL, one can add semantic annotations in the form of URI
references to external models to the interface, operation, and message constructs.
WSDL-S is independent of the language used for defining the semantic models and
explicitly contemplates the possibility of using WSML, OWL, and UML as potential
candidates [5].

WSDL-S provides a set of extension attributes and elements for associating the
semantic annotations. The extension attribute modelReference allows one to spec-
ify associations between a WSDL entity and a concept in a semantic model. This
extension can be used for annotating XML Schema complex types and elements,
WSDL operations, and the extension elements precondition and effect, which will
are described below.

The schemaMapping extension attribute can be used for specifying mechanisms
for handling structural differences between XML Schema elements and complex
types and their corresponding semantic model concepts. These annotations can then
be used for what we refer to as lifting and lowering of execution data (i.e., transform-
ing syntactic data into its semantic counterpart, and vice versa).

WSDL-S defines two new child elements for the operation element, namely,
precondition and effect. These elements allow one to define the conditions that
must hold before executing an operation and the effects the execution would have.
This information is typically to be used for discovering suitable Web Services. Fi-
nally, WSDL-S allows one to use the category extension attribute on the interface
element in order to define categorization information for publishing Web Services in
registries such as UDDI.

Recently the WSDL-S proposal was superseded by SAWSDL [70], which is
a W3C Recommendation. SAWSDL is a restricted and homogenized version of
WSDL-S in which annotations like preconditions and effects have not been explicitly
contemplated since there is no current agreement about them in the Semantic Web
Services community. It is worth noting, however, that SAWSDL does not preclude
the use of these types of annotations as illustrated in the usage guide generated by
the SAWSDL Working Group [7].

The main differences between SAWSDL and WSDL-S are the fact that pre-
condition and effect have been discarded. Category has been replaced by the more
general modelReference extension attribute which in SAWSDL can be used to
annotate XML Schema complex type definitions, simple type definitions, element
declarations, and attribute declarations as well as WSDL interfaces, operations, and
faults. Finally, schemaMapping has been decomposed into two different extension
attributes, namely, liftingSchemaMapping and loweringSchemaMapping, so as to
specifically identify the type of transformation.

13.4.2 Discovery

The UDDI specification and the Universal Business Registry (UBR) are the main
industrial efforts towards the automation of the discovery of Web Services. The
METEOR-S Web Services Discovery Infrastructure (MWSDI) [212] attempts to
enhance existing Web Services discovery infrastructure by using semantics. MW SDI
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is a scalable infrastructure for the semantics-based publication and discovery of Web
Services.

MWSDI aims to provide unified access to a large number of third-party reg-
istries. Thus, in order to provide a scalable and flexible infrastructure it has been
implemented using peer-to-peer (P2P) computing techniques. It is based on a four-
layered architecture which includes a data layer, a communications layer, an operator
services layer, and a semantic specification layer. The data layer consists of the Web
Services registries and is based on UDDI. The communications layer is the P2P
infrastructure, which is based on JXTA. The operator services layer provides the se-
mantic discovery and publication of Web Services. Finally, the semantic specification
layer enhances the framework with semantics.

MWSDI uses semantics for two purposes. Firstly, it uses the so-called registries
ontology which stores registry information, maintains relationships between domains
within MWSDI, and associates registries to them. This ontology stores mappings be-
tween registries and domains so that finding Web Services for a specific domain can
be directed to the appropriate registries. Additionally the registries ontology captures
relationships between registries so that searches can be made more selective on the
basis of these relationships.

Secondly, MWSDI envisions including domain-specific ontologies for registries,
so that Web Services can be annotated by mapping inputs and outputs to existing
domain ontologies. The purpose of defining these mappings is to enable semantic
discovery by allowing users to express their requirements as service templates which
are expressed using concepts from the same ontology.

The semantic publication of services in MWSDI registries uses UDDI tMod-
els for registering the domain ontologies and CategoryBags for categorizing WSDL
entities according to one or more tModels. MWSDI provides both a manual and a
semiautomatic mechanism for defining the mappings between WSDL elements and
the concepts in the domain ontologies [212].

13.4.3 Mediation

METEOR-S deals with the inherent heterogeneity between messages exchanged by
Web Services by mapping inputs and outputs of services to conceptual models. These
mappings are mainly supported by means of WSDL-S or SAWSDL annotations (see
Sect. 13.4.1) [155]. In particular, as we previously introduced, WSDL-S provides
schemaMapping annotations and SAWSDL decouples these into liftingSchemaMap-
ping and loweringSchemaMapping, where lifting is the process that transforms syn-
tactic information into semantic data and lowering is the inverse process.®

Both WSDL-S and SAWSDL uniquely provide placeholders for identifying the
transformations to be used for lifting and lowering data. They do so by means of
URISs which point to transformation definitions. Nothing is prescribed with respect to

8 METEOR-S refers to lifting and lowering as upcasting and downcasting, respectively. We
here use the terminology adopted in SEE, which also coincides with the one in SAWSDL.
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the transformation mechanism. Thus, the approach adopted in METEOR-S is agnos-
tic to the mapping representation language employed. This provides total flexibility
but also requires ad hoc manipulation by the execution environment at run time.

Most of the research on data mediation in METEOR-S has been devoted to identi-
fying, categorizing, and analyzing the types of heterogeneity that can typically arise,
and to providing a specific implementation based on XQuery and XSLT. In summary,
message-level heterogeneity has roughly been classified (borrowing from previous
work federated databases) into domain-level incompatibilities, entity definition mis-
matches, and differences on the level of abstraction adopted when defining concepts
(see [155] for further details).

The current implementation of data mediation techniques in METEOR-S uses
WSDL-S annotations pointing to mappings represented in XQuery and XSLT, which
are assumed to be powerful enough in most cases. At run time these mappings
are interpreted by the METEOR-S middleware in order to perform the appropri-
ate transformations of the data exchanged between Web Services [155]. No research
has, however, been devoted to the creation of a fully fledged framework capable of
dealing with more complex situations where XQuery and XSLT are not convenient
or even suitable, e.g., manipulation of diverse serializations of the same information
in RDF/RDF Schema.

13.4.4 Composition

Semantic composition of Web Services in METEOR-S is supported by the so-
called METEOR-S Web Service Composition Framework (MWSCF) [197]. In a nut-
shell, the composition framework aims to increase the flexibility of the composition
of Web Services by making use of semantic process templates. Semantic process
templates define processes in terms of semantically defined activities. Using these
semantic process templates, one can generate executable processes by binding the
semantically defined activities to concrete Web Services that conform to the activity
specification.

MWSCF is composed of four components: the process builder, the discov-
ery infrastructure (see Sect. 13.4.2), XML repositories, and the process-execution
engine. The process builder includes a graphical user interface for defining semantic
process templates and a process generator. The process generator retrieves ontolo-
gies, activity interfaces, and process templates from the XML repositories and uses
MWSDI for discovering suitable Web Services, in order to transform the templates
into executable processes. The executable process definitions can then be handed
to the process-execution engine for the actual execution of the composition of Web
Services.

In MWSCEF semantic process templates are basically a set of activities connected
by means of BPEL control-flow constructs. Activities can be defined with a varying
degree of flexibility by using a specific Web service implementation, a Web service
interface, or a semantic activity template. Implementations of specific Web Services
can be specified for static compositions. Web service interfaces can be applied to gain
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some flexibility, allowing diverse implementations of the same interface to be inter-
changeably executed. Finally, semantic activity templates provide a greater degree
of flexibility by defining activities semantically in terms of their inputs, outputs, and
functional semantics, e.g., preconditions and effects.

The creation of an executable process is a semiautomated process performed at
design time where the user is assisted in refining the template with concrete Web
Services and dataflow. In order to do so, Web Services that implement the specified
Web service interfaces are retrieved from the XML repository and the MWSDI is
used for discovering suitable services when semantic activity templates have been
specified. After all the activities have been replaced by concrete Web Services, the
user can map the outputs of Web Services to the inputs of other services in order to
define the process dataflow. Once the explicit dataflow has been defined, the process
generator creates the executable representation, which is a BPEL4AWS process that
can be executed in any BPEL execution engine.



14

Conclusions and Outlook

In the course of this book we have illustrated how to enable Semantic Web Services
by means of Semantically Enabled Service-oriented Architectures (SESAs). Cur-
rently there is little or no demand for dynamic or scalable Service-Oriented Archi-
tectures (SOAs). Not only are the few SOAs in production relatively small, and thus
do not yet pose scalability problems, but also current technologies are inadequate
for service discovery, negotiation, adaptation, and composition. In the real (nonauto-
mated) world, business transactions are governed by legal, regulatory, financial, tax,
and other agreements or obligations. Partners who wish to automate business trans-
actions do so after defining the terms by which automated actions must correspond
to the relevant governance. At the same time, these partners establish terms of re-
course or remuneration in the case of failures. Such agreements, referenced above
as nonfunctional requirements, are a long way from being dynamically discovered,
selected, and enacted.

14.1 Why SOA?

Web Services have become another milestone towards providing interoperability
among distributed and independent software systems. But one major problem has
remained unresolved. Although there is an abundance of technologies which theo-
retically should enable interoperability for disperse systems, from the practical per-
spective the process of dynamic creation of ad hoc interactions between companies,
as envision by Web Services, is still fiction. So it is the interoperability issue, not
the communication one, which has to be addressed next to enable dynamic collab-
oration of independent software entities on the Internet. Web service specifications
based on commonly agreed standards and implemented in .NET and J2EE frame-
works are struggling to overcome existing limitations of Web architecture. Data that
is exchanged between Web servers and Web browsers remains solely dedicated for
human consumption, and cannot be readily processed by automatic software agents.
Similarly Web Services and their underlying XML technology still deal mainly with
infrastructure, syntax, and basic representational issues, but not with the meaning
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of data and the processes that are used by particular systems. Adding semantics to
the existing Web Services technologies is a fundamental requirement if we want to
deliver workable integration solutions for the next Web generation.

The most important issue in today’s design of software architectures is to satisfy
increasing software complexity as well as new IT needs, such as the need to respond
quickly to new requirements of businesses, the need to continually reduce the cost
of IT, or the ability to integrate legacy and new emerging business information sys-
tems. In the current IT enterprise settings, introducing a new product or service and
integrating multiple services and systems present unpredicted costs, delays, and diffi-
culty. Existing IT systems consist of a patchwork of legacy products, monolithic off-
shelf applications, and proprietary integration. It is even reality today that in many
cases users on “spinning chairs” manually reenter data from one system to another
within the same organization. The past and existing efforts in Enterprise Application
Integration (EAI) do not represent successful and flexible solutions. Several studies
showed that EAI projects are lengthy and the majority of these efforts are late and
over budget. It is mainly costs, proprietary solutions, and tightly coupled interfaces
that make EAI expensive and inflexible.

Commercial successes of SOAs are not yet apparent because the underlying
technologies such as those presented in this book are still in their infancy. Avail-
able specifications and technologies will have to go through the lengthy standard-
ization process and the real effort of consequent prototype developments, before the
first commercial solutions are available on the market. There is widespread agree-
ment and recognition that dynamic interoperability on the Internet is only possi-
ble if resources are semantically described. SESA and its underlying technologies
based on Semantic Execution Environment (SEE), Web Service Modeling Ontology
(WSMO), Web Service Modeling Language (WSML), and Web Service Execution
Environment (WSMX) with their related specifications are the principal candidates
to become the backbone of the next Web generation, enabling software entities to
dynamically interoperate over the Internet.

SOA solutions are the next evolutionary step in software architectures. SOA is
an IT architecture in which functions are defined as independent services with well-
defined, invocable interfaces. SOA will enable cost-effective integration as well as
bring flexibility to business processes. In line with SOA principles, several standards
have been developed and are currently emerging in IT environments. In particular,
Web Services technology provides a means to publish services in registries, describ-
ing their interfaces using the Web Service Description Language (WSDL) and ex-
changing requests and messages over a network using SOAP. The Business Process
Execution Language (BPEL) allows composition of services into complex processes
as well as their execution. Although Web Services technologies have added a new
value to the current IT environments with regard to the integration of distributed
software components using Web standards, they cover mainly characteristics of syn-
tactic interoperability. With respect to a large number of services that will exist in IT
environments in the interenterprise and intraenterprise integration settings based on
SOA, the problems of service discovery or selection of the best services conforming



14.2 Future Work 305

to the user’s needs, as well as resolving heterogeneity in services capabilities and
interfaces will again be a lengthy and costly process.

As SOA technology and deployments mature over the next few years, especially
scalability will become a significant issue. SOAs of large companies (for example,
Verizon) currently account for less than 1% of their transactions. Implementing only
one fourth of a large enterprise in a SOA would lead to many millions of simple
and composite services and billions of transactions per day. Customer-facing ser-
vices represent less than half of the systems of big enterprises. Supply chain, human
resources, and internal operations often dwarf employee-facing systems in size and
complexity. Let us imagine the number of services required to operate even 25%
of such enterprises, the number of potential transactions, and then how these enter-
prises might work with partners via SOA-based information systems. A few large
enterprises would alone scale beyond billions of services and transactions. Now let
us consider how such business would operate using a SOA with no dynamic service
discovery, selection, negotiation, adaptation, and composition. Manual intervention
would be required to complete or approve the results of those actions. SESA provides
an appealing infrastructure to deal with these kinds of issues.

14.2 Future Work

This book has outlined a comprehensive framework that integrates two complimen-
tary and revolutionary technical advances, SOAs and the Semantic Web, into a single
computing architecture that we call Semantically Enabled Service-oriented Architec-
ture (SESA). While SOA is widely acknowledged for its potential to revolutionize
the world of computing, this success is dependent on resolving two fundamental
challenges that SOA does not address, namely, integration, and search or mediation.
In a service-oriented world, millions of services must be discovered and selected on
the basis of requirements, then orchestrated and adapted or integrated. SOA depends
on but does not address either search or integration.

WSMO in its current state formalizes all the main principles that underlie our
work and is now very mature. That said, we do not expect fundamental changes to
the conceptual model anymore and believe that it is in suitable shape to tackle all
of the main problems that we want to address in such a framework. The effort in
terms of the SEE architecture, concrete language of WSML, or tools is still more
dynamic. Most of the ongoing architectural effort on the WSMX has been moved
to the Semantic Execution Environment Technical Committee (SEE TC) of OASIS.
For the individual WSMX components outlined in this book, there is currently major
progress and we have probably not been able to cover all the latest developments.
Still, we can predict that we shall be able to choose between several alternative
industrial-strength implementations and strategies for every task and component. Fu-
ture work on WSML will include the application of the language to various use cases
and the improvement of WSML tools, such as editors and reasoners (see Chap. 7).

Standardization organizations such as OASIS, OMG, and W3C have estab-
lished several groups or technical committees to develop and standardize SOA and
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the SESA vision presented in this book. While some of these groups, such as
SEE TC, directly focus on the development of SESA, other groups are working
on other important related aspects. Although activities towards standardizing an
overall framework for Semantic Web Services have been stalled by the W3C for
the moment, other standardization groups have in the meantime established several
working groups or technical committees to develop and standardize particular as-
pects of Semantic Web Service technologies, as presented in this book. While the
SEE TC of OASIS focuses on the development of a reference execution environment
for a SESA, several other groups in OASIS such as SOA Reference Model Tech-
nical Commitee (RM TC), SOA Adoption Blueprints Technical Commitee, or Web
Services Resource Framework (WSRF) are working on other related aspects.
Summarizing, while SOAs are widely accepted as the next generation of comput-
ing to which most software vendors are committed, standards are still evolving. In
recent years, the number and the complexity of SOA standard proposals has grown
enormously, with few reference technologies. Some standards already exist, while
others are scheduled for development and release within OASIS, OMG, and W3C.

14.3 Commercialization

Even when a so-called standard is in place, this is only a prerequisite for the success
of a technology, and is not a guarantee by any means. The eventual criterion for suc-
cess that Semantic Web Service technology has to face will be industrial adoption.
While scalability and precision are the focus of current efforts related to Web Ser-
vices and SOAs, the more fundamental goal of enabling Semantic Web Services is
at the core of our research interests, as outlined in this book.

The challenge for the research and industrial communities over the next few
years will be to collaboratively realize the concepts described in this book. This
challenge involves two ongoing and complementary paradigm shifts in computing:
(1) the movement to service orientation and (2) the use of semantic technologies and
ontologies in industrial-scale infrastructures and applications. Achieving such a goal
will require collaboration not only within the research community, but also among
the global players in industry. To achieve what we consider true realization — defined
not in terms of purely research prototypes but in terms of industrial-scale produc-
tion applications — collaboration between the research and industrial communities
is essential. In industry, SOA, or a SOA refinement, is recognized not only as the
next generation of computing, but also as the technology that will largely replace or
encapsulate current technologies. This will require the research community to under-
stand the state and nature of the relevant industrial problems, products, and solutions.
It will require industry to understand the relevant challenges and opportunities to
which the research community can contribute. Finally, it will require researchers to
collaborate with industry so that research results can be achieved and then integrated
into industrial solutions.
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